Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 32(7): 912-921, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642879

RESUMO

OBJECTIVE: Exercise remains a hallmark treatment for post-traumatic osteoarthritis (PTOA) and may maintain joint homeostasis in part by clearing inflammatory cytokines, cells, and particles. It remains largely unknown whether exercise-induced joint clearance can provide therapeutic relief of PTOA. In this study, we hypothesized that exercise could slow the progression of preclinical PTOA in part by enhancing knee joint clearance. DESIGN: Surgical medial meniscal transection was used to induce PTOA in 3-month-old male Lewis rats. A sham surgery was used as a control. Mild treadmill walking was introduced 3 weeks post-surgery and maintained to 6 weeks post-surgery. Gait and isometric muscle torque were measured at the study endpoint. Near-infrared imaging tracked how exercise altered lymphatic and venous knee joint clearance during discrete time points of PTOA progression. RESULTS: Exercise mitigated joint degradation associated with PTOA by preserving glycosaminoglycan content and reducing osteophyte volume (effect size (95% Confidence Interval (CI)); 1.74 (0.71-2.26)). PTOA increased hind step widths (0.57 (0.18-0.95) cm), but exercise corrected this gait dysfunction (0.54 (0.16-0.93) cm), potentially indicating pain relief. Venous, but not lymphatic, clearance was quicker 1-, 3-, and 6-weeks post-surgery compared to baseline. The mild treadmill walking protocol expedited lymphatic clearance rate in moderate PTOA (3.39 (0.20-6.59) hrs), suggesting exercise may play a critical role in restoring joint homeostasis. CONCLUSIONS: We conclude that mild exercise has the potential to slow disease progression in part by expediting joint clearance in moderate PTOA.


Assuntos
Instabilidade Articular , Osteoartrite do Joelho , Condicionamento Físico Animal , Ratos Endogâmicos Lew , Animais , Masculino , Ratos , Condicionamento Físico Animal/fisiologia , Instabilidade Articular/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Modelos Animais de Doenças , Marcha/fisiologia , Articulação do Joelho/fisiopatologia , Glicosaminoglicanos/metabolismo , Osteoartrite/fisiopatologia , Osteoartrite/metabolismo , Osteófito , Progressão da Doença
2.
Biomaterials ; 284: 121483, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35428014

RESUMO

The lymphatic vasculature is an essential component of the body's circulation providing a network of vessels to return fluid and proteins from the tissue space to the blood, to facilitate immune ce-ll and antigen transport to lymph nodes, and to take up dietary lipid from the intestine. The development of biomaterial-based strategies to facilitate the growth of lymphatics either for regenerative purposes or as model system to study lymphatic biology is still in its nascent stages. In particular, platforms that encourage the sprouting and formation of lymphatic networks from collecting vessels are particularly underdeveloped. Through implementation of a modular, poly(ethylene glycol) (PEG)-based hydrogel, we explored the independent contributions of matrix elasticity, degradability, and adhesive peptide presentation on sprouting of implanted segments of rat lymphatic collecting vessels. An engineered hydrogel with 680 Pa elasticity, 2.0 mM RGD adhesive peptide, and full susceptibility to protease degradability produced the highest levels of sprouting relative to other physicochemical matrix properties. This engineered hydrogel was then utilized as a scaffold to facilitate the implantation of a donor vessel that functionally grafted into the host vasculature. This hydrogel provides a promising platform for facilitating lymphangiogenesis in vivo or as a means to understand the cellular mechanisms involved in the sprout process during collecting lymphatic vessel collateralization.


Assuntos
Hidrogéis , Vasos Linfáticos , Animais , Materiais Biocompatíveis , Hidrogéis/química , Linfangiogênese , Vasos Linfáticos/patologia , Polietilenoglicóis , Ratos
3.
J Biomech Eng ; 144(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35118490

RESUMO

The lymphatic system has been proposed to play a crucial role in preventing the development and progression of osteoarthritis (OA). As OA develops and progresses, inflammatory cytokines and degradation by-products of joint tissues build up in the synovial fluid (SF) providing a feedback system to exacerbate disease. The lymphatic system plays a critical role in resolving inflammation and maintaining overall joint homeostasis; however, there is some evidence that the lymphatics can become dysfunctional during OA. We hypothesized that the functional mechanics of lymphatic vessels (LVs) draining the joint could be directly compromised due to factors within SF derived from osteoarthritis patients (OASF). Here, we utilized OASF and SF derived from healthy (non-OA) individuals (healthy SF (HSF)) to investigate potential effects of SF entering the draining lymph on migration of lymphatic endothelial cells (LECs) in vitro, and lymphatic contractile activity of rat femoral LVs (RFLVs) ex vivo. Dilutions of both OASF and HSF containing serum resulted in a similar LEC migratory response to the physiologically endothelial basal medium-treated LECs (endothelial basal medium containing serum) in vitro. Ex vivo, OASF and HSF treatments were administered within the lumen of isolated LVs under controlled pressures. OASF treatment transiently enhanced the RFLVs tonic contractions while phasic contractions were significantly reduced after 1 h of treatment and complete ceased after overnight treatment. HSF treatment on the other hand displayed a gradual decrease in lymphatic contractile activity (both tonic and phasic contractions). The observed variations after SF treatments suggest that the pump function of lymphatic vessel draining the joint could be directly compromised in OA and thus might present a new therapeutic target.


Assuntos
Vasos Linfáticos , Osteoartrite , Animais , Células Endoteliais , Humanos , Sistema Linfático/metabolismo , Vasos Linfáticos/metabolismo , Ratos , Líquido Sinovial/metabolismo
4.
J Biomed Opt ; 26(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34881527

RESUMO

SIGNIFICANCE: Changes in interstitial fluid clearance are implicated in many diseases. Using near-infrared (NIR) imaging with properly sized tracers could enhance our understanding of how venous and lymphatic drainage are involved in disease progression or enhance drug delivery strategies. AIM: We investigated multichromatic NIR imaging with multiple tracers to assess in vivo microvascular clearance kinetics and pathways in different tissue spaces. APPROACH: We used a chemically inert IR Dye 800CW (D800) to target venous capillaries and a purified conjugate of IR dye 680RD with 40 kDa PEG (P40D680) to target lymphatic capillaries in vivo. Optical imaging settings were validated and tuned in vitro using tissue phantoms. We investigated multichromatic NIR imaging's utility in two in vivo tissue beds: the mouse tail and rat knee joint. We then tested the ability of the approach to detect interstitial fluid perturbations due to exercise. RESULTS: In an in vitro simulated tissue environment, free dye and PEG mixture allowed for simultaneous detection without interference. In the mouse tail, co-injected NIR tracers cleared from the interstitial space via distinct routes, suggestive of lymphatic and venous uptake mechanisms. In the rat knee, we determined that exercise after injection transiently increased lymphatic drainage as measured by lower normalized intensity immediately after exercise, whereas exercise pre-injection exhibited a transient delay in clearance from the joint. CONCLUSIONS: NIR imaging enables simultaneous imaging of lymphatic and venous-mediated fluid clearance with great sensitivity and can be used to measure temporal changes in clearance rates and pathways.


Assuntos
Vasos Linfáticos , Animais , Testes Diagnósticos de Rotina , Líquido Extracelular , Vasos Linfáticos/diagnóstico por imagem , Camundongos , Imagem Óptica , Ratos , Veias
5.
Acta Biomater ; 93: 270-281, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30986528

RESUMO

Clearance of particles from the knee is an essential mechanism to maintain healthy joint homeostasis and critical to the delivery of drugs and therapeutics. One of the limitations in developing disease modifying drugs for joint diseases, such as osteoarthritis (OA), has been poor local retention of the drugs. Enhancing drug retention within the joint has been a target of biomaterial development, however, a fundamental understanding of joint clearance pathways has not been characterized. We applied near-infrared (NIR) imaging techniques to assess size-dependent in vivo clearance mechanisms of intra-articular injected, fluorescently-labelled polyethylene glycol (PEG-NIR) conjugates. The clearance of 2 kDa PEG-NIR (τ = 171 ±â€¯11 min) was faster than 40 kDa PEG-NIR (τ = 243 ±â€¯16 min). 40 kDa PEG-NIR signal was found in lumbar lymph node while 2 kDa PEG-NIR signal was not. Thus, these two conjugates may be cleared through different pathways, i.e. lymphatics for 40 kDa PEG-NIR and venous for 2 kDa PEG-NIR. Endothelin-1 (ET-1), a potent vasoconstrictor of vessels, is elevated in synovial fluid of OA patients but, its effects on joint clearance are unknown. Intra-articular injection of ET-1 dose-dependently inhibited the clearance of both 2 kDa and 40 kDa PEG-NIR. ET-1 caused a 1.63 ±â€¯0.17-fold increase in peak fluorescence for 2 kDa PEG-NIR and a 1.85 ±â€¯0.15-fold increase for 40 kDa PEG-NIR; and ET-1 doubled their clearance time constants. The effects of ET-1 were blocked by co-injection of ET receptor antagonists, bosentan or BQ-123. These findings provide fundamental insight into retention and clearance mechanisms that should be considered in the development and delivery of drugs and biomaterial carriers for joint diseases. STATEMENT OF SIGNIFICANCE: This study demonstrates that in vivo knee clearance can be measured using NIR technology and that key factors, such as size of materials and biologics, can be investigated to define joint clearance mechanisms. Therapies targeting regulation of joint clearance may be an approach to treat joint diseases like osteoarthritis. Additionally, in vivo functional assessment of clearance may be used as diagnostics to monitor progression of joint diseases.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Endotelina-1/química , Articulação do Joelho/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Polietilenoglicóis/química , Animais , Bosentana/química , Bosentana/farmacologia , Liberação Controlada de Fármacos , Endotelina-1/administração & dosagem , Corantes Fluorescentes/química , Injeções Intra-Articulares , Cinética , Masculino , Imagem Óptica , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Ratos , Ratos Sprague-Dawley , Líquido Sinovial/efeitos dos fármacos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...