Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 31(3): 736-751, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34192383

RESUMO

Transmissible cancers are parasitic malignant cell lineages that have acquired the ability to infect new hosts from the same species, or sometimes related species. First described in dogs and Tasmanian devils, transmissible cancers were later discovered in some marine bivalves affected by a leukaemia-like disease. In Mytilus mussels, two lineages of bivalve transmissible neoplasia (BTN) have been described to date (MtrBTN1 and MtrBTN2), both of which emerged in a Mytilus trossulus founder individual. Here, we performed extensive screening of genetic chimerism, a hallmark of transmissible cancer, by genotyping 106 single nucleotide polymorphisms of 5,907 European Mytilus mussels. Genetic analysis allowed us to simultaneously obtain the genotype of hosts - Mytilus edulis, M. galloprovincialis or hybrids - and the genotype of tumours of heavily infected individuals. In addition, a subset of 222 individuals were systematically genotyped and analysed by histology to screen for possible nontransmissible cancers. We detected MtrBTN2 at low prevalence in M. edulis, and also in M. galloprovincialis and hybrids although at a much lower prevalence. No MtrBTN1 or new BTN were found, but eight individuals with nontransmissible neoplasia were observed at a single polluted site on the same sampling date. We observed a diversity of MtrBTN2 genotypes that appeared more introgressed or more ancestral than MtrBTN1 and reference healthy M. trossulus individuals. The observed polymorphism is probably due to somatic null alleles caused by structural variations or point mutations in primer-binding sites leading to enhanced detection of the host alleles. Despite low prevalence, two sublineages divergent by 10% fixed somatic null alleles and one nonsynonymous mtCOI (mitochondrial cytochrome oxidase I) substitution are cospreading in the same geographical area, suggesting a complex diversification of MtrBTN2 since its emergence and host species shift.


Assuntos
Mytilus edulis , Mytilus , Neoplasias , Animais , Cães , Europa (Continente) , Mytilus/genética , Mytilus edulis/genética , Prevalência
2.
Dis Aquat Organ ; 140: 203-208, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32815528

RESUMO

This note describes the first detection of the bacteria Francisella halioticida in mussels Mytilus spp. from locations in Normandy and northern Brittany (France) experiencing high mussel mortalities, while it was not detected in the Bay of St Brieuc (northern Brittany), an area which was not affected by abnormal mussel mortality. The distribution of the bacteria in mussels seems to be restricted to inflammatory granulomas as observed in Yesso scallops Mizuhopecten yessoensis from Canada and Japan. F. halioticida has been identified as being involved in mass (>80%) mortality of abalones Haliotis gigantea in Japan and high (up to 40%) mortality of Yesso scallops Mizuhopecten yessoensis in Canada as well as in lesions reducing marketability of Yesso scallops in Japan. The impact of this bacterium on the health of mussels needs to be investigated in future research, especially since the cause of high mussel mortalities that have been occurring in France for the past few years is still undetermined.


Assuntos
Mytilus , Animais , Canadá , França , Francisella , Japão
3.
Evol Appl ; 13(3): 575-599, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32431737

RESUMO

Human-mediated transport creates secondary contacts between genetically differentiated lineages, bringing new opportunities for gene exchange. When similar introductions occur in different places, they provide informally replicated experiments for studying hybridisation. We here examined 4,279 Mytilus mussels, sampled in Europe and genotyped with 77 ancestry-informative markers. We identified a type of introduced mussels, called "dock mussels," associated with port habitats and displaying a particular genetic signal of admixture between M. edulis and the Mediterranean lineage of M. galloprovincialis. These mussels exhibit similarities in their ancestry compositions, regardless of the local native genetic backgrounds and the distance separating colonised ports. We observed fine-scale genetic shifts at the port entrance, at scales below natural dispersal distance. Such sharp clines do not fit with migration-selection tension zone models, and instead suggest habitat choice and early-stage adaptation to the port environment, possibly coupled with connectivity barriers. Variations in the spread and admixture patterns of dock mussels seem to be influenced by the local native genetic backgrounds encountered. We next examined departures from the average admixture rate at different loci, and compared human-mediated admixture events, to naturally admixed populations and experimental crosses. When the same M. galloprovincialis background was involved, positive correlations in the departures of loci across locations were found; but when different backgrounds were involved, no or negative correlations were observed. While some observed positive correlations might be best explained by a shared history and saltatory colonisation, others are likely produced by parallel selective events. Altogether, genome-wide effect of admixture seems repeatable and more dependent on genetic background than environmental context. Our results pave the way towards further genomic analyses of admixture, and monitoring of the spread of dock mussels both at large and at fine spacial scales.

4.
J Invertebr Pathol ; 170: 107308, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857123

RESUMO

In 2014, a high and unusual mass mortality of mussels occurred in several important production areas along the French coasts of the Atlantic and English Channel. In the first quarter of 2016, mass mortalities hit farms on the west coast of the country once again. These heterogeneous mortality events elicited a multi-parametric study conducted during the 2017 mussel season in three sites in northern Brittany (Brest, Lannion and St. Brieuc). The objective was to assess the health status of these mussels, follow mortality and attempt to identify potential causes of the abnormal high mortality of farmed mussels in northern Brittany. Brest was the most affected site with 70% cumulative mortality, then Lannion with 40% and finally St. Brieuc with a normal value of 15%. We highlighted a temporal 'mortality window' that opened throughout the spring season, and concerned the sites affected by mortality of harmful parasites (including pathogenic bacteria), neoplasia, metal contamination, and tissue alterations. Likely, the combination of all these factors leads to a weakening of mussels that can cause death.


Assuntos
Interações Hospedeiro-Patógeno , Mytilus edulis , Poluentes Químicos da Água/toxicidade , Animais , França , Longevidade , Mytilus edulis/efeitos dos fármacos , Mytilus edulis/microbiologia , Mytilus edulis/parasitologia , Mytilus edulis/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...