Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(2): 1161-1168, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36519443

RESUMO

The development of electronic devices based on the functionalization of (nano)cellulose platforms relies upon an atomistic understanding of the structural and electronic properties of a combined system, cellulose/functional element. In this work, we present a theoretical study of the nanocellulose/graphene interfaces (nCL/G) based on first-principles calculations. We find that the binding energies of both hydrophobic/G (nCLphob/G) and hydrophilic/G (nCLphil/G) interfaces are primarily dictated by the van der Waals interactions, and are comparable with those of their 2D interface counterparts. We verify that the energetic preference of nCLphob/G has been reinforced by the inclusion of an aqueous medium via an implicit solvation model. Further structural characterization was carried out using a set of simulations of the carbon K-edge X-ray absorption spectra to identify and distinguish the key absorption features of the nCLphob/G and nCLphil/G interfaces. The electronic structure calculations reveal that the linear energy bands of graphene lie in the band gap of the nCL sheet, while depletion/accumulation charge density regions are observed. We show that external agents, i.e., electric field and mechanical strain, allow for tunability of the Dirac cone and charge density at the interface. The control/maintenance of the Dirac cone states in nCL/G is an important feature for the development of electronic devices based on cellulosic platforms.


Assuntos
Grafite , Carbono , Celulose , Eletricidade , Eletrônica
2.
Medchemcomm ; 8(4): 713-719, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108789

RESUMO

The use of nanoparticle-based transdermal delivery systems is a promising approach to efficiently carry and deliver therapeutic agents for dermal and systemic administration. Nitric oxide (NO) is a key molecule that plays important roles in human skin such as the control of skin homeostasis, skin defense, control of dermal blood flow, and wound healing. In addition, human skin contains stores of NO derivatives that can be mobilized and release free NO upon UV irradiation with beneficial cardiovascular effects, for instance the control of blood pressure. In this work, the NO donor precursor glutathione (GSH) was encapsulated (encapsulation efficiency of 99.60%) into ultra-small chitosan nanoparticles (CS NPs) (hydrodynamic size of 30.65 ± 11.90 nm). GSH-CS NPs have a core-shell structure, as revealed by atomic force microscopy and X-ray photoelectron spectroscopy, in which GSH is protected in the nanoparticle core. Nitrosation of GSH by nitrous acid led to the formation of the NO donor S-nitrosogluthathione (GSNO) into CS NPs. The GSNO release from the CS NPs followed a Fickian diffusion described by the Higuchi mathematical model. Topical application of GSNO-CS NPs in intact human skin significantly increased the levels of NO and its derivatives in the epidermis, as assayed by confocal microscopy, and this effect was further enhanced by skin irradiation with UV light. Therefore, NO-releasing CS NPs are suitable materials for transdermal NO delivery to local and/or systemic therapies.

3.
Bioinformatics ; 32(3): 345-53, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26458889

RESUMO

MOTIVATION: Given a protein sequence and a number of potential domains matching it, what are the domain content and the most likely domain architecture for the sequence? This problem is of fundamental importance in protein annotation, constituting one of the main steps of all predictive annotation strategies. On the other hand, when potential domains are several and in conflict because of overlapping domain boundaries, finding a solution for the problem might become difficult. An accurate prediction of the domain architecture of a multi-domain protein provides important information for function prediction, comparative genomics and molecular evolution. RESULTS: We developed DAMA (Domain Annotation by a Multi-objective Approach), a novel approach that identifies architectures through a multi-objective optimization algorithm combining scores of domain matches, previously observed multi-domain co-occurrence and domain overlapping. DAMA has been validated on a known benchmark dataset based on CATH structural domain assignments and on the set of Plasmodium falciparum proteins. When compared with existing tools on both datasets, it outperforms all of them. AVAILABILITY AND IMPLEMENTATION: DAMA software is implemented in C++ and the source code can be found at http://www.lcqb.upmc.fr/DAMA. CONTACT: juliana.silva_bernardes@upmc.fr or alessandra.carbone@lip6.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Estrutura Terciária de Proteína , Análise de Sequência de Proteína/métodos , Genômica , Anotação de Sequência Molecular , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...