Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 193(2): 60, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33442789

RESUMO

Acid mine drainage occurs due to the chemical and microbiological oxidation of sulfide minerals and can be a source of potentially toxic elements contamination of groundwater and surface water. The objective of this study was to identify microorganisms involved in sulfide oxidation in the tailings of a Bahia Gold Belt mine (Brazil). Samples of solids and water were collected at the mine tailings dam and characterized. The microorganisms were isolated after enrichment and subsequent purification. The major constituents of the tailings are Si, Fe, Al, S, and K. The sulfur content of the tailings is 0.98%. The major phases are quartz, muscovite, and clinochlore. Gravity concentrates of the tailings show several particles of pyrite, that is, the major sulfide phase. Molecular analysis identified the microorganisms isolated in the acid mine drainage process in this region. Five bacterium species were found: Acidithiobacillus spp., Acidithiobacillus ferrooxidans, Acidiphilium spp., Leptospirillum type II, and Sulfobacillus spp. No organisms of the archaea or eukaryote domains were found. The isolate was used in the bioleaching of copper sulfide ore, and the copper extraction was about 60% in 60 days for ground ore.


Assuntos
Monitoramento Ambiental , Ouro , Acidithiobacillus , Brasil , Mineração , Sulfetos
2.
J Contam Hydrol ; 103(3-4): 99-108, 2009 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-18990466

RESUMO

This paper presents numerical simulations of laboratory experiments where diesel, initially present at 18% residual saturation in a sand column, was recovered by injecting a micellar solution containing the surfactant Hostapur SAS-60 (SAS), and two alcohols, n-butanol (n-BuOH), and n-pentanol (n-PeOH). The micellar solution was developed and optimized for diesel recovery using phase diagrams and soil column experiments. Numerical simulations with the compositional simulator UTCHEM agree with the experimental results and show that the entire residual diesel in the sand column was recovered after the downward injection of 5 pore volumes of the micellar solution. Recovery of diesel occurs by enhanced solubility in the microemulsion phase and by mobilization. An additional series of simulations investigated the effects of phase transfer, alcohol partitioning, and component segregation on diesel recovery. These simulations indicate that diesel can be accurately represented in the model by a single component, but that the pseudo-component approach for active matter and the assumption of local phase equilibrium leads to an underestimation of diesel mobilization.


Assuntos
Gasolina/análise , Micelas , Dióxido de Silício/química , Simulação por Computador , Modelos Químicos , Soluções , Viscosidade
3.
Bioprocess Biosyst Eng ; 32(3): 415-24, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18797932

RESUMO

A rotating disk apparatus was used to investigate the biodegradation of PAHs from non-aqueous phase liquids to solutions of Brij 35. The mass transfer of PAHs in absence of surfactant solution was not large enough to replenish the degraded PAHs. The addition of surfactant resulted in an overall enhancement of biodegradation rates compared to that observed in pure aqueous solution. This is because surfactant partition significant amount of PAHs into the bulk phase, where uptake occurs but the supply of PAHs to the aqueous phase through micellar solubilization at latter period limited biodegradation rates. It was demonstrated the relationship between biodegradation rate and surfactant dose and the mechanisms controlling the mass transfer of PAH from NAPLs. The satisfactory comparison of the experimental data with the predictions of a model, which parameters were determined from independent solubilization and dissolution experiments and based on the main assumption that the solutes must be present in the true aqueous phase to be degraded, allows us to conclude the absence of direct uptake of PAHs by bacteria.


Assuntos
Reatores Biológicos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Polietilenoglicóis/química , Pseudomonas stutzeri/metabolismo , Reologia/métodos , Água/metabolismo , Biodegradação Ambiental , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Transição de Fase , Rotação , Solubilidade
4.
J Colloid Interface Sci ; 320(1): 298-306, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18242628

RESUMO

A modified rotating disk apparatus was used to investigate the mass transfer of two polycyclic aromatic hydrocarbon (PAH) compounds, naphthalene and phenanthrene from a synthesized non-aqueous phase liquid (NAPL) comprised of hexadecane and the 2 PAHs into different non-ionic surfactant solutions. Major factors influencing the rate of solubilization of PAHs from a NAPL in micelles of different non-ionic surfactants were determined. As the surfactant concentration increased, the mass transfer coefficients for both PAHs from the NAPL decreased. The maximum rates of solubilization of the PAHs however increase with surfactant dose. The rate of solubilization was found to be limited by rates of desorption of mixed micelles from the NAPL and their rate of diffusion into the bulk solution phase. The influence of the surfactant molecular structure on the kinetics of the solubilization process was investigated. The results suggested that the length of the alkyl portion of the non-ionic surfactant and the micelle volume influenced the solubilization kinetics. The results of the investigation improve our ability to provide a rational basis for selecting the optimum surfactant and dose to enhance the solubilization of PAHs from NAPLs.

5.
Environ Sci Technol ; 38(22): 5878-87, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15573585

RESUMO

This research investigates the equilibrium solubilization behavior of naphthalene and phenanthrene from multicomponent nonaqueous-phase liquids (NAPLs) by five different polyoxyethylene nonionic surfactants. The overall goal of the study was to achieve an improved understanding of surfactant-aided dissolution of polycyclic aromatic hydrocarbons (PAHs) from multicomponent NAPLs in the context of surfactant-enhanced remediation of contaminated sites. The extent of solubilization of the PAHs in the surfactant micelles increased linearly with the PAH mole fraction in the NAPL. The solubilization extent and micelle-water equilibrium partition coefficient of the PAHs increased with the size of the polar shell region of the micelles rather than the size of the hydrophobic core of the micelle. The presence of both PAHs in the shell region of the micelles was confirmed by 1H NMR analysis. This is an important observation because it is commonly assumed that in multi-solute systems the solutes with relatively greater hydrophobicity are solubilized only in the micellar core. A comparison of the 1H NMR spectra of pure surfactant solutions and solutions contacted with various NAPLs demonstrated that the distribution of PAHs between the shell and the core changed with the concentration of PAHs in the micelles and in the NAPL. Competitive solubilization of the PAHs was observed when both PAHs were present in the NAPL. For example, in surfactant solutions of Brij 35 and Tween 80, the solubilization of phenanthrene was decreased in the presence of naphthalene as compared to systems that contained phenanthrene as the only solute. In contrast, with micellar solutions of Tergitol NP-10 and Triton X-100, phenanthrene solubilization was enhanced in the presence of naphthalene. The activity coefficients of the PAHs in the micellar phase were generally found to increase with PAH concentrations in the micelle.


Assuntos
Naftalenos/química , Fenantrenos/química , Tensoativos/química , Humanos , Cinética , Micelas , Poluentes do Solo/análise , Solubilidade , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...