Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 29(1): e01820, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30550634

RESUMO

Instantaneous implementation of systematic conservation plans at regional scales is rare. More typically, planned actions are applied incrementally over periods of years or decades. During protracted implementation, the character of the connected ecological system will change as a function of external anthropogenic pressures, local metapopulation processes, and environmental fluctuations. For heavily exploited systems, habitat quality will deteriorate as the plan is implemented, potentially influencing the schedule of protected area implementation necessary to achieve conservation objectives. Understanding the best strategy to adopt for applying management within a connected environment is desirable, especially given limited conservation resources. Here, we model the sequential application of no-take marine protected areas (MPAs) in the central Philippines within a metapopulation framework, using a range of network-based decision rules. The model was based on selecting 33 sites for protection from 101 possible sites over a 35-yr period. The graph-theoretic network criteria to select sites for protection included PageRank, maximum degree, closeness centrality, betweenness centrality, minimum degree, random, and historical events. We also included a dynamic strategy called colonization-extinction rate that was updated every year based on the changing capacity of each site to produce and absorb larvae. Each rule was evaluated in the context of achieving the maximum metapopulation mean lifetime at the conclusion of the implementation phase. MPAs were designated through the alteration of the extinction risk parameter. The highest ranked criteria were PageRank while the actual implementation from historical records ranked lowest. Our results indicate that protecting the sites ranked highest with regard to larval supply is likely to yield the highest benefit for fish abundance and fish metapopulation persistence. Model results highlighted the benefits of including network processes in conservation planning.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Peixes , Filipinas , Dinâmica Populacional
2.
Ecol Evol ; 7(19): 7859-7871, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043040

RESUMO

The establishment of marine protected areas (MPAs) can often lead to environmental differences between MPAs and fishing zones. To determine the effects on marine dispersal of environmental dissimilarity between an MPA and fishing zone, we examined the abundance and recruitment patterns of two anemonefishes (Amphiprion frenatus and A. perideraion) that inhabit sea anemones in different management zones (i.e., an MPA and two fishing zones) by performing a field survey and a genetic parentage analysis. We found lower levels of abundance per anemone in the MPA compared to the fishing zones for both species (n = 1,525 anemones, p = .032). The parentage analysis also showed that lower numbers of fishes were recruited from the fishing zones and outside of the study area into each anemone in the MPA than into each anemone in the fishing zones (n = 1,525 anemones, p < .017). However, the number of self-recruit production per female did not differ between the MPA and fishing zones (n = 384 females, p = .516). Because the ocean currents around the study site were unlikely to cause a lower settlement intensity of larvae in the MPA, the ocean circulation was not considered crucial to the observed abundance and recruitment patterns. Instead, stronger top-down control and/or a lower density of host anemones in the MPA were potential factors for such patterns. Our results highlight the importance of dissimilarity in a marine environment as a factor that affects connectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...