Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 5(1): 21, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36697573

RESUMO

Hyperpolarized contrast agents (HyCAs) have enabled unprecedented magnetic resonance imaging (MRI) of metabolism and pH in vivo. Producing HyCAs with currently available methods, however, is typically time and cost intensive. Here, we show virtually-continuous production of HyCAs using parahydrogen-induced polarization (PHIP), without stand-alone polarizer, but using a system integrated in an MRI instead. Polarization of ≈2% for [1-13C]succinate-d2 or ≈19% for hydroxyethyl-[1-13C]propionate-d3 was created every 15 s, for which fast, effective, and well-synchronized cycling of chemicals and reactions in conjunction with efficient spin-order transfer was key. We addressed these challenges using a dedicated, high-pressure, high-temperature reactor with integrated water-based heating and a setup operated via the MRI pulse program. As PHIP of several biologically relevant HyCAs has recently been described, this Rapid-PHIP technique promises fast preclinical studies, repeated administration or continuous infusion within a single lifetime of the agent, as well as a prolonged window for observation with signal averaging and dynamic monitoring of metabolic alterations.

2.
Phys Chem Chem Phys ; 23(47): 26645-26652, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34846056

RESUMO

We describe a new method for pulsed spin order transfer of parahydrogen-induced polarization (PHIP) that enables high polarization in incompletely 2H-labeled molecules by exciting only the desired protons in a frequency-selective manner. This way, the effect of selected J-couplings is suspended. Experimentally 1.25% 13C polarization were obtained for 1-13C-ethyl pyruvate and 50% pH2 at 9.4 Tesla.

3.
Phys Chem Chem Phys ; 23(3): 2320-2330, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33449978

RESUMO

The signal enhancement provided by the hyperpolarization of nuclear spins of metabolites is a promising technique for diagnostic magnetic resonance imaging (MRI). To date, most 13C-contrast agents are hyperpolarized utilizing a complex or cost-intensive polarizer. Recently, the in situ parahydrogen-induced 13C hyperpolarization was demonstrated. Hydrogenation, spin order transfer (SOT) by a pulsed NMR sequence, in vivo administration, and detection was achieved within the magnet bore of a 7 Tesla MRI system. So far, the hyperpolarization of the xenobiotic molecule 1-13C-hydroxyethylpropionate (HEP) and the biomolecule 1-13C-succinate (SUC) through the PH-INEPT+ sequence and a SOT scheme proposed by Goldman et al., respectively, was shown. Here, we investigate further the hyperpolarization of SUC at 7 Tesla and study the performance of two additional SOT sequences. Moreover, we present first results of the hyperpolarization at high magnetic field of 1-13C-phospholactate (PLAC), a derivate to obtain the metabolite lactate, employing the PH-INEPT+ sequence. For SUC and PLAC, 13C polarizations of about 1-2% were achieved within seconds and with minimal equipment. Effects that potentially may explain loss of 13C polarization have been identified, i.e. low hydrogenation yield, fast T1/T2 relaxation and the rarely considered 13C isotope labeling effect.

4.
NMR Biomed ; 33(6): e4291, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32154970

RESUMO

The aim of this study was to acquire the transient MRI signal of hyperpolarized tracers and their metabolites efficiently, for which specialized imaging sequences are required. In this work, a multi-echo balanced steady-state free precession (me-bSSFP) sequence with Iterative Decomposition with Echo Asymmetry and Least squares estimation (IDEAL) reconstruction was implemented on a clinical 3 T positron-emission tomography/MRI system for fast 2D and 3D metabolic imaging. Simulations were conducted to obtain signal-efficient sequence protocols for the metabolic imaging of hyperpolarized biomolecules. The sequence was applied in vitro and in vivo for probing the enzymatic exchange of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate. Chemical shift resolution was achieved using a least-square, iterative chemical species separation algorithm in the reconstruction. In vitro, metabolic conversion rate measurements from me-bSSFP were compared with NMR spectroscopy and free induction decay-chemical shift imaging (FID-CSI). In vivo, a rat MAT-B-III tumor model was imaged with me-bSSFP and FID-CSI. 2D metabolite maps of [1-13 C]pyruvate and [1-13 C]lactate acquired with me-bSSFP showed the same spatial distributions as FID-CSI. The pyruvate-lactate conversion kinetics measured with me-bSSFP and NMR corresponded well. Dynamic 2D metabolite mapping with me-bSSFP enabled the acquisition of up to 420 time frames (scan time: 180-350 ms/frame) before the hyperpolarized [1-13 C]pyruvate was relaxed below noise level. 3D metabolite mapping with a large field of view (180 × 180 × 48 mm3 ) and high spatial resolution (5.6 × 5.6 × 2 mm3 ) was conducted with me-bSSFP in a scan time of 8.2 seconds. It was concluded that Me-bSSFP improves the spatial and temporal resolution for metabolic imaging of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate compared with either of the FID-CSI or EPSI methods reported at 3 T, providing new possibilities for clinical and preclinical applications.


Assuntos
Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Ácido Pirúvico/metabolismo , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Simulação por Computador , Espectroscopia de Prótons por Ressonância Magnética , Ratos Endogâmicos F344 , Processamento de Sinais Assistido por Computador , Fatores de Tempo
5.
ChemistryOpen ; 8(6): 728-736, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31275794

RESUMO

The signal enhancement provided by the hyperpolarization of nuclear spins of biological molecules is a highly promising technique for diagnostic imaging. To date, most 13C-contrast agents had to be polarized in an extra, complex or cost intensive polarizer. Recently, the in situ hyperpolarization of a 13C contrast agent to >20 % was demonstrated without a polarizer but within the bore of an MRI system. This approach addresses some of the challenges of MRI with hyperpolarized tracers, i. e. elevated cost, long production times, and loss of polarization during transfer to the detection site. Here, we demonstrate the first hyperpolarization of a biomolecule in aqueous solution in the bore of an MRI at field strength of 7 T within seconds. The 13C nucleus of 1-13C, 2,3-2H2-succinate was polarized to 11 % corresponding to a signal enhancement of approximately 18.000. Interesting effects during the process of the hydrogenation reaction which lead to a significant loss of polarization have been observed.

6.
PLoS One ; 13(7): e0200141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001327

RESUMO

Magnetic Resonance Imaging (MRI) is a powerful imaging tool but suffers from a low sensitivity that severely limits its use for detecting metabolism in vivo. Hyperpolarization (HP) methods have demonstrated MRI signal enhancement by several orders of magnitude, enabling the detection of metabolism with a sensitivity that was hitherto inaccessible. While it holds great promise, HP is typically relatively slow (hours), expensive (million $, €) and requires a dedicated device ("polarizer"). Recently, we introduced a new method that creates HP tracers without an external polarizer but within the MR-system itself based on parahydrogen induced polarization (PHIP): Synthesis Amid the Magnet Bore Allows Dramatically Enhanced Nuclear Alignment (SAMBADENA). To date, this method is the simplest and least cost-intensive method for hyperpolarized 13C-MRI. HP of P13C > 20% was demonstrated for 5mM tracer solutions previously. Here, we present a setup and procedure that enabled the first in vivo application of SAMBADENA: Within seconds, a hyperpolarized angiography tracer was produced and injected into an adult mouse. Subsequently, fast 13C-MRI was acquired which exhibited the vena cava, aorta and femoral arteries of the rodent. This first SAMBADENA in vivo 13C-angiography demonstrates the potential of the method as a fast, simple, low-cost alternative to produce HP-tracers to unlock the vast but hidden powers of MRI.


Assuntos
Isótopos de Carbono , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste , Desenho de Equipamento , Humanos , Hidrogênio , Angiografia por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Imãs , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Imagens de Fantasmas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...