Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 71(12): 3524-3534, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32515479

RESUMO

In a given root system, individual roots usually exhibit a rather homogeneous tip structure although highly different diameters and growth patterns, and this diversity is of prime importance in the definition of the whole root system architecture and foraging characteristics. In order to represent and predict this diversity, we built a simple and generic model at root tip level combining structural and functional knowledge on root elongation. The tip diameter, reflecting meristem size, is used as a driving variable of elongation. It varies, in response to the fluctuations of photo-assimilate availability, between two limits (minimal and maximal diameter). The elongation rate is assumed to be dependent on the transient value of the diameter. Elongation stops when the tip reaches the minimal diameter. The model could satisfactorily reproduce patterns of root elongation and tip diameter changes observed in various species at different scales. Although continuous, the model could generate divergent root classes as classically observed within populations of lateral roots. This model should help interpret the large plasticity of root elongation patterns which can be obtained in response to different combinations of endogenous and exogenous factors. The parameters could be used in phenotyping the root system.


Assuntos
Meristema , Raízes de Plantas
2.
Int J Neural Syst ; 29(8): 1850059, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30776985

RESUMO

Bio-inspired computing using artificial spiking neural networks promises performances outperforming currently available computational approaches. Yet, the number of applications of such networks remains limited due to the absence of generic training procedures for complex pattern recognition, which require the design of dedicated architectures for each situation. We developed a spike-timing-dependent plasticity (STDP) spiking neural network (SSN) to address spike-sorting, a central pattern recognition problem in neuroscience. This network is designed to process an extracellular neural signal in an online and unsupervised fashion. The signal stream is continuously fed to the network and processed through several layers to output spike trains matching the truth after a short learning period requiring only few data. The network features an attention mechanism to handle the scarcity of action potential occurrences in the signal, and a threshold adaptation mechanism to handle patterns with different sizes. This method outperforms two existing spike-sorting algorithms at low signal-to-noise ratio (SNR) and can be adapted to process several channels simultaneously in the case of tetrode recordings. Such attention-based STDP network applied to spike-sorting opens perspectives to embed neuromorphic processing of neural data in future brain implants.


Assuntos
Potenciais de Ação , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Modelos Neurológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...