Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Econ Hum Biol ; 50: 101271, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37467686

RESUMO

In pandemics, past and present, there is no textbook definition of when a pandemic is over, and how and when exactly a respiratory virus transitions from pandemic to endemic spread. In this paper we have compared the 1918/19 influenza pandemic and the subsequent spread of seasonal flu until 1924. We analysed 14,125 reports of newly stated 32,198 influenza-like illnesses from the Swiss canton of Bern. We analysed the temporal and spatial spread at the level of 497 municipalities, 9 regions, and the entire canton. We calculated incidence rates per 1000 inhabitants of newly registered cases per calendar week. Further, we illustrated the incidences of each municipality for each wave (first wave in summer 1918, second wave in fall/winter 1918/19, the strong later wave in early 1920, as well as the two seasonal waves in 1922 and 1924) on a choropleth map. We performed a spatial hotspot analysis to identify spatial clusters in each wave, using the Gi* statistic. Furthermore, we applied a robust negative binomial regression to estimate the association between selected explanatory variables and incidence on the ecological level. We show that the pandemic transitioned to endemic spread in several waves (including another strong wave in February 1920) with lower incidence and rather local spread until 1924 at least. At the municipality and regional levels, there were different patterns of spread both between pandemic and seasonal waves. In the first pandemic wave in summer 1918 the probability of higher incidence was increased in municipalities with a higher proportion of factories (OR 2.60, 95%CI 1.42-4.96), as well as in municipalities that had access to a railway station (OR 1.50, 95%CI 1.16-1.96). In contrast, the strong fall/winter wave 1918 was very widespread throughout the canton. In general, municipalities at higher altitude showed lower incidence. Our study adds to the sparse literature on incidence in the 1918/19 pandemic and subsequent years. Before Covid-19, the last pandemic that occurred in several waves and then became endemic was the 1918-19 pandemic. Such scenarios from the past can inform pandemic planning and preparedness in future outbreaks.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Incidência , Influenza Humana/epidemiologia , Pandemias , Suíça/epidemiologia , COVID-19/epidemiologia
2.
Water Res ; 42(19): 4791-801, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18823927

RESUMO

In order to distinguish between aerobic biodegradation of synthetic polymers in fresh and seawater, polyethylene glycols (PEGs) were systematically and comparatively investigated in inocula from municipal wastewater and seawater aquarium filters for the first time. The molecular weight (MW) of the PEGs, (HO(CH(2)CH(2)O)(n)H, n=3-1350) as representatives of water-soluble polymers, ranged from 250 to 57,800Da. The biodegradation was observed by removal of dissolved organic carbon and carbon dioxide production by applying standardized ISO and OECD test methods. Specific analyses using liquid chromatography mass spectrometry (LC-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were performed. All PEGs selected were completely biodegradable in freshwater media within 65d. PEGs with an MW up to 14,600Da have a similar degradation pathway which is characterized by gradual splitting of C(2)-units off the chain resulting in formation of short-chain PEGs. In artificial seawater media, full biodegradation of PEGs up to 7400Da required more time than in freshwater. PEGs with MW 10,300 and 14,600Da were only partially degraded whereas PEGs with MW 26,600 and 57,800Da were not degraded for a period of 135d. The biodegradation pathway of PEG 250 and PEG 970 in seawater is similar to that for freshwater. For PEGs having an MW from 2000 to 10,300Da, the degradation pathway in seawater differs from the pathway of the shorter PEGs.


Assuntos
Aerobiose , Polietilenoglicóis/química , Água do Mar/química , Cromatografia Líquida , Peso Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Water Res ; 40(18): 3419-28, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16962630

RESUMO

The biodegradation of selected non-adsorbing persistent polar pollutants (P(3)) during wastewater (WW) treatment was studied by comparing a lab-scale membrane bioreactor (MBR) running in parallel to activated sludge treatment (AST). The investigated P(3) are relevant representatives or metabolites from the compound classes: pesticides, pharmaceuticals, insect repellents, flame retardants and anionic surfactants. Analyses of all these P(3) at low ng L(-1) levels with sufficient standard deviations was performed in WW influents and effluents. Non-degradable micropollutants, such as EDTA and carbamazepine were not eliminated at all during WW treatment by any technique. However, the MBR showed significant better removals compared to AST for the investigated poorly biodegradable P(3), such as diclofenac, mecoprop and sulfophenylcarboxylates. An application of such an in terms of sludge retention time optimised MBR may lead to a reduction of these P(3) in the watercycle.


Assuntos
Reatores Biológicos , Membranas Artificiais , Compostos Orgânicos/química , Esgotos , Poluentes Químicos da Água/química , Purificação da Água , Reatores Biológicos/microbiologia , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...