Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34835061

RESUMO

Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, Flavivirus genus, is responsible for neurological symptoms that may cause permanent disability or death. With an incidence on the rise, it is the major arbovirus affecting humans in Central/Northern Europe and North-Eastern Asia. Neuronal death is a critical feature of TBEV infection, yet little is known about the type of death and the molecular mechanisms involved. In this study, we used a recently established pathological model of TBEV infection based on human neuronal/glial cells differentiated from fetal neural progenitors and transcriptomic approaches to tackle this question. We confirmed the occurrence of apoptotic death in these cultures and further showed that genes involved in pyroptotic death were up-regulated, suggesting that this type of death also occurs in TBEV-infected human brain cells. On the contrary, no up-regulation of major autophagic genes was found. Furthermore, we demonstrated an up-regulation of a cluster of genes belonging to the extrinsic apoptotic pathway and revealed the cellular types expressing them. Our results suggest that neuronal death occurs by multiple mechanisms in TBEV-infected human neuronal/glial cells, thus providing a first insight into the molecular pathways that may be involved in neuronal death when the human brain is infected by TBEV.


Assuntos
Apoptose , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Neuroglia/virologia , Neurônios/virologia , Piroptose , Apoptose/genética , Astrócitos/metabolismo , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Piroptose/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Transcriptoma
2.
J Neuroinflammation ; 17(1): 76, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127025

RESUMO

BACKGROUND: Tick-borne encephalitis virus (TBEV) is a member of the Flaviviridae family, Flavivirus genus, which includes several important human pathogens. It is responsible for neurological symptoms that may cause permanent disability or death, and, from a medical point of view, is the major arbovirus in Central/Northern Europe and North-Eastern Asia. TBEV tropism is critical for neuropathogenesis, yet little is known about the molecular mechanisms that govern the susceptibility of human brain cells to the virus. In this study, we sought to establish and characterize a new in vitro model of TBEV infection in the human brain and to decipher cell type-specific innate immunity and its relation to TBEV tropism and neuropathogenesis. METHOD: Human neuronal/glial cells were differentiated from neural progenitor cells and infected with the TBEV-Hypr strain. Kinetics of infection, cellular tropism, and cellular responses, including innate immune responses, were characterized by measuring viral genome and viral titer, performing immunofluorescence, enumerating the different cellular types, and determining their rate of infection and by performing PCR array and qRT-PCR. The specific response of neurons and astrocytes was analyzed using the same approaches after enrichment of the neuronal/glial cultures for each cellular subtype. RESULTS: We showed that infection of human neuronal/glial cells mimicked three major hallmarks of TBEV infection in the human brain, namely, preferential neuronal tropism, neuronal death, and astrogliosis. We further showed that these cells conserved their capacity to mount an antiviral response against TBEV. TBEV-infected neuronal/glial cells, therefore, represented a highly relevant pathological model. By enriching the cultures for either neurons or astrocytes, we further demonstrated qualitative and quantitative differential innate immune responses in the two cell types that correlated with their particular susceptibility to TBEV. CONCLUSION: Our results thus reveal that cell type-specific innate immunity is likely to contribute to shaping TBEV tropism for human brain cells. They describe a new in vitro model for in-depth study of TBEV-induced neuropathogenesis and improve our understanding of the mechanisms by which neurotropic viruses target and damage human brain cells.


Assuntos
Astrócitos/imunologia , Astrócitos/virologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Neurônios/imunologia , Neurônios/virologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Suscetibilidade a Doenças , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Humanos , Imunidade Inata , Tropismo Viral
3.
PLoS Pathog ; 11(4): e1004859, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25923687

RESUMO

It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult.


Assuntos
Vírus da Doença de Borna/fisiologia , Regulação para Baixo , Neurônios GABAérgicos/metabolismo , Interações Hospedeiro-Patógeno , Neurogênese , Fosfoproteínas/metabolismo , Proteínas Estruturais Virais/metabolismo , Transporte Ativo do Núcleo Celular , Apolipoproteínas E/antagonistas & inibidores , Apolipoproteínas E/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Doença de Borna/metabolismo , Doença de Borna/patologia , Doença de Borna/virologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Proliferação de Células , Células Cultivadas , França , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/virologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Células-Tronco Embrionárias Humanas/virologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Estatmina , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Estruturais Virais/genética
4.
Vet Immunol Immunopathol ; 92(3-4): 163-72, 2003 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-12730016

RESUMO

Interferon-gamma (IFN-gamma) is a major effector cytokine of the immune system with an expression pattern strictly restricted to cells of the lymphoid lineage. Several years ago, we reported that, during early pregnancy, the trophectoderm of the pig blastocyst, which represents a monolayer of polarized epithelial cells secretes high amount of IFN-gamma in a transient and developmentally regulated manner. In an effort to study the molecular basis of this atypical IFN-gamma gene expression, a pig trophectoderm cell line, TBA B4-3, was established in our laboratory. These cells developed a polarized phenotype with high transepithelial electrical resistance (TER) when grown on a microporous membrane. We found that treatment of polarized TBA B4-3 cells with the strong PKC agonist PMA induced, 3-4 days later, a transient IFN-gamma mRNA expression and vectorial IFN-gamma protein secretion. In order to better understand IFN-gamma gene regulation in TBA B4-3 cells, we examined in this system the effect of several drugs and factors known to affect the inducibility of this cytokine in T lymphocytes, the main source of IFN-gamma in the immunocompetent animal. We found that cyclosporine A (CsA) treatment of TBA B4-3 cells induces a partial inhibition of IFN-gamma secretion, thus indicating a minor role for the calcineurin signaling pathway in IFN-gamma expression. In addition, we found that although PMA alone can induce IFN-gamma secretion, the calcium ionophore A23187 synergizes with PMA for induction. We also analyzed by Southern blot the methylation status of a CpG dinucleotide in the 5' flanking region of IFN-gamma promoter and found that it was unmethylated in TBA B4-3 cells and in several pig epithelial cell lines that do not express IFN-gamma thus indicating the absence of correlation between demethylation and the ability to express IFN-gamma. Taken together, these results indicate that the mechanisms involved in IFN-gamma induction in TBA B4-3 cells are atypical compared to those presently known to operate in the T cell lineage.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/imunologia , Interferon gama/biossíntese , Suínos/imunologia , Acetato de Tetradecanoilforbol/farmacologia , Trofoblastos/imunologia , Animais , Calcimicina/imunologia , Calcimicina/metabolismo , Polaridade Celular , Ciclosporina/farmacologia , Relação Dose-Resposta Imunológica , Impedância Elétrica , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Imunossupressores/farmacologia , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Ionóforos/imunologia , Ionóforos/metabolismo , Cinética , Gravidez , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...