Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 616518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505383

RESUMO

Warming temperatures in continuous permafrost zones of the Arctic will alter both hydrological and geochemical soil conditions, which are strongly linked with heterotrophic microbial carbon (C) cycling. Heterogeneous permafrost landscapes are often dominated by polygonal features formed by expanding ice wedges: water accumulates in low centered polygons (LCPs), and water drains outward to surrounding troughs in high centered polygons (HCPs). These geospatial differences in hydrology cause gradients in biogeochemistry, soil C storage potential, and thermal properties. Presently, data quantifying carbon dioxide (CO2) and methane (CH4) release from HCP soils are needed to support modeling and evaluation of warming-induced CO2 and CH4 fluxes from tundra soils. This study quantifies the distribution of microbial CO2 and CH4 release in HCPs over a range of temperatures and draws comparisons to previous LCP studies. Arctic tundra soils were initially characterized for geochemical and hydraulic properties. Laboratory incubations at -2, +4, and +8°C were used to quantify temporal trends in CO2 and CH4 production from homogenized active layer organic and mineral soils in HCP centers and troughs, and methanogen abundance was estimated from mcrA gene measurements. Results showed that soil water availability, organic C, and redox conditions influence temporal dynamics and magnitude of gas production from HCP active layer soils during warming. At early incubation times (2-9 days), higher CO2 emissions were observed from HCP trough soils than from HCP center soils, but increased CO2 production occurred in center soils at later times (>20 days). HCP center soils did not support methanogenesis, but CH4-producing trough soils did indicate methanogen presence. Consistent with previous LCP studies, HCP organic soils showed increased CO2 and CH4 production with elevated water content, but HCP trough mineral soils produced more CH4 than LCP mineral soils. HCP mineral soils also released substantial CO2 but did not show a strong trend in CO2 and CH4 release with water content. Knowledge of temporal and spatial variability in microbial C mineralization rates of Arctic soils in response to warming are key to constraining uncertainties in predictive climate models.

2.
J Contam Hydrol ; 224: 103480, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31006532

RESUMO

Low permeability source zones sustain long-term trichloroethene (TCE) groundwater contamination. In anaerobic environments, TCE is transformed by both biological reductive dechlorination and abiotic reactions with reactive minerals. Little is known about the relative contribution of these two pathways as TCE diffuses from low permeability zones (LPZs) into high permeability zones (HPZs). This study combines a flow cell experiment, batch experiments, and a diffusion-reaction model to evaluate the contributions of biotic and abiotic TCE transformation in LPZs. Natural clay (LPZ) and sand (HPZ) from a former Air Force base were used in all experiments. In batch, the LPZ material transformed TCE and cis-1,2-dichloroethene (cis-DCE) to acetylene with pseudo first-order rate constants of 8.57 × 10-6 day-1 and 1.02 × 10-6 day-1, respectively. Biotic and abiotic pathways were then evaluated together in a bench-scale flow cell (16.5 cm × 2 cm × 16.5 cm) that contained a LPZ layer, with a source of TCE at the base, overlain by a HPZ continuously purged with lactate-amended groundwater. Diffusion controlled mass transfer in the LPZ, while advection controlled migration in the HPZ. The mass discharge rate of TCE and its biotic (cis-DCE and vinyl chloride) and abiotic (acetylene) transformation products were measured over 180 days in the flow cell effluent. Depth profiles of these compounds through the LPZ were determined after terminating the experiment. A one-dimensional diffusion-reaction model was used to interpret the effluent and depth profile data and constrain reaction parameters. Abiotic transformation rate constants for TCE to acetylene, normalized to in situ solids loading, were approximately 13 times greater in batch than in the flow cell. Slower transformation rates in the flow cell indicate elevated TCE concentration and/or further degradation of acetylene to other reduced gas compounds in the flow cell LPZ (thereby partially masking TCE abiotic transformation). Biotic and abiotic parameters used to interpret the flow cell data were then used to simulate a field site with a 300 cm thick LPZ. Abiotic processes contributed to a 2% reduction in TCE flux after 730 days. When abiotic rate constants were changed to that observed in batch, or to rate constants previously reported for a pyrite rich mudstone, the TCE flux reduction was 21% and 53%, respectively, after 730 days. Though biotic processes dominated TCE transformation in the flow cell experiment, the simulations indicate that abiotic processes have potential to significantly contribute to TCE attenuation in electron donor limited environments provided suitable reactive minerals are present.


Assuntos
Água Subterrânea , Tricloroetileno , Cloreto de Vinil , Anaerobiose , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...