Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33043276

RESUMO

Over the past century, research has focused on continuously improving the performance of manufacturing processes and systems-often measured in terms of cost, quality, productivity, and material and energy efficiency. With the advent of smart manufacturing technologies-better production equipment, sensing technologies, computational methods, and data analytics applied from the process to enterprise levels-the potential for sustainability performance improvement is tremendous. Sustainable manufacturing seeks the best balance of a variety of performance measures to satisfy and optimize the goals of all stakeholders. Accurate measures of performance are the foundation on which sustainability objectives can be pursued. Historically, operational and information technologies have undergone disparate development, with little convergence across the domains. To focus future research efforts in advanced manufacturing, the authors organized a one-day workshop, sponsored by the U.S. National Science Foundation, at the joint manufacturing research conferences of the American Society of Mechanical Engineers and Society of Manufacturing Engineers. Research needs were identified to help harmonize disparate manufacturing metrics, models, and methods from across conventional manufacturing, nanomanufacturing, and additive/hybrid manufacturing processes and systems. Experts from academia and government labs presented invited lightning talks to discuss their perspectives on current advanced manufacturing research challenges. Workshop participants also provided their perspectives in facilitated brainstorming breakouts and a reflection activity. The aim was to define advanced manufacturing research and educational needs for improving manufacturing process performance through improved sustainability metrics, modeling approaches, and decision support methods. In addition to these workshop outcomes, a review of the recent literature is presented, which identifies research opportunities across several advanced manufacturing domains. Recommendations for future research describe the short-, mid-, and long-term needs of the advanced manufacturing community for enabling smart and sustainable manufacturing.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31274963

RESUMO

This paper reports on the development of Factory Optima, a web-based system that allows manufacturing process engineers to compose, optimise and perform trade-off analysis of manufacturing and contract service networks based on a reusable repository of performance models. Performance models formally describe process feasibility constraints and metrics of interest, such as cost, throughput and CO 2 emissions, as a function of fixed and control parameters, such as equipment and contract properties and settings. The repository contains performance models representing (1) unit manufacturing processes, (2) base contract services and (3) a composite steady-state service network. The proposed framework allows process engineers to hierarchically compose model instances of service networks, which can represent production cells, lines, factory facilities and supply chains, and perform deterministic optimisation based on mathematical programming and Pareto-optimal trade-off analysis. Factory Optima is demonstrated using a case study of a service network for a heat sink product which involves contract vendors and manufacturing activities, including cutting, shearing, Computer Numerical Control (CNC) machining with milling and drilling operations, quality inspection, finishing, and assembly.

4.
Int J Prod Lifecycle Manag ; 10(4): 326-347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29911681

RESUMO

Recent advances enable data from manufacturing systems to be captured and contextualised relative to other phases of the product lifecycle, a necessary step toward understanding system behaviour and satisfying traceability requirements. Significant challenges remain for integrating information across the lifecycle and enabling efficient decision-making. In this paper, we explore opportunities for mapping standard data representations, such as the Standard for the Exchange of Product Data (STEP), MTConnect, and the Quality Information Framework (QIF) to integrate information silos existing across the lifecycle. To demonstrate this vision, we describe a reference implementation with a contract manufacturer in the National Institute of Standards and Technology (NIST) Smart Manufacturing Systems Test Bed. Using this implementation, we explore how knowledge generated from manufacturing can support lifecycle decision-making. As a case study, we then present an interactive prototype correlating the test bed's data based on the context that must be provided for a specific decision-making viewpoint.

5.
J Clean Prod ; 1872018.
Artigo em Inglês | MEDLINE | ID: mdl-31092983

RESUMO

Environmental sustainability information in the manufacturing industry is not easily shared between stages in the product lifecycle. In particular, reliable manufacturing-related information for assessing the sustainability of a product is often unavailable at the design stage. Instead, designers rely on aggregated, often outdated information or make decisions by analogy (e.g., a similar manufacturing process for a similar product yielded X and Y results). However, smart manufacturing and the Internet of Things have potential to bridge the gap between design and manufacturing through data and knowledge sharing. This paper analyzes environmental sustainability assessment methods to enable more accurate decisions earlier in design. The techniques and methods are categorized based on the stage they apply to in the product lifecycle, as described by the Systems Integration of Manufacturing Applications (SIMA) reference architecture. Furthermore, opportunities for aligning standard data representation to promote sustainability assessment during design are identified.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31274974

RESUMO

Design for Environment (DfE) principles are helpful for integrating manufacturing-specific environmental sustainability considerations into product and process design. However, such principles are often overly general, static, and disconnected from production contexts. This paper proposes a visual analytics-based framework for generating DfE principles that are contextualized to specific production setups. These principles are generated through interactive visual exploration of design and process parameters as well as manufacturing process performance metrics corresponding to the production setup. We also develop a formal schema for aiding storage, updating, and reuse of the generated DfE principles. In this schema, each DfE principle is associated with corresponding product lifecycle data and the evidence that led to the generation of that principle. We demonstrate the proposed visual analytics framework using data from an industry-led experiment that compared dry ice based and oil based milling for a specific production setup.

7.
J Mech Des N Y ; 139(11)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170612

RESUMO

The rapid rise in technologies for data collection has created an unmatched opportunity to advance the use of data-rich tools for lifecycle decision-making. However, the usefulness of these technologies is limited by the ability to translate lifecycle data into actionable insights for human decision-makers. This is especially true in the case of sustainable lifecycle design (SLD), as the assessment of environmental impacts, and the feasibility of making corresponding design changes, often relies on human expertise and intuition. Supporting human sense-making in SLD requires the use of both data-driven and user-driven methods while exploring lifecycle data. A promising approach for combining the two is through the use of visual analytics (VA) tools. Such tools can leverage the ability of computer-based tools to gather, process, and summarize data along with the ability of human-experts to guide analyses through domain knowledge or data-driven insight. In this paper, we review previous research that has created VA tools in SLD. We also highlight existing challenges and future opportunities for such tools in different lifecycle stages-design, manufacturing, distribution & supply chain, use-phase, end-of-life, as well as life cycle assessment. Our review shows that while the number of VA tools in SLD is relatively small, researchers are increasingly focusing on the subject matter. Our review also suggests that VA tools can address existing challenges in SLD and that significant future opportunities exist.

8.
J Comput Inf Sci Eng ; 17(3)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28966561

RESUMO

The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle-impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing. Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of smart manufacturing. The case study in this paper provides some example knowledge objects to enable smart manufacturing.

9.
Nucleic Acids Res ; 38(9): 2931-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20100802

RESUMO

Polo-like kinases (Plk1-4) are emerging as an important class of proteins involved in many aspects of cell cycle regulation and response to DNA damage. Here, we report the cloning of a fifth member of the polo-like kinase family named Plk5. DNA and protein sequence analyses show that Plk5 shares more similarities with Plk2 and Plk3 than with Plk1 and Plk4. Consistent with this observation, we show that mouse Plk5 is a DNA damage inducible gene. Mouse Plk5 protein localizes predominantly to the nucleolus, and deletion of a putative nucleolus localization signal (NoLS) within its N-terminal moiety disrupts its nucleolar localization. Ectopic expression of Plk5 leads to cell cycle arrest in G1, decreased DNA synthesis, and to apoptosis, a characteristic it shares with Plk3. Interestingly, in contrast to mouse Plk5 gene, the sequence of human Plk5 contains a stop codon that produces a truncated protein lacking part of the kinase domain.


Assuntos
Nucléolo Celular/enzimologia , Dano ao DNA , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose , Linhagem Celular , Clonagem Molecular , Fase G1 , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência , Análise de Sequência , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...