Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640202

RESUMO

Compositionally engineered a La1-xBaxCoO3-δ-(1-a) BaZr0.9Y0.1O2.95 (a = 0.6, 0.7, 0.8 and x = 0.5, 0.6, 0.7) (LBZ) nanocomposite cathodes were prepared by oxidation driven in situ exsolution of a single-phase material deposited on a BaZr0.9Y0.1O2.95 electrolyte. The processing procedure of the cathode was optimized by reducing the number of thermal treatments as the single-phase precursor was deposited directly on the electrolyte. The exsolution and firing of the cathodes occurred in one step. The electrochemical performance of symmetrical cells with the compositionally engineered cathodes was investigated by impedance spectroscopy in controlled atmospheres. The optimized materials processing gave web-like nanostructured cathodes with superior electrochemical performance for all compositions. The area specific resistances obtained were all below 12 Ω·cm2 at 400 °C and below 0.59 Ω·cm2 at 600 °C in 3% moist synthetic air. The resistances of the nominal 0.6 La0.5Ba0.5CoO3-δ-0.4 BaZr0.9Y0.1O2.95 and 0.8 La0.5Ba0.5CoO3-δ-0.2 BaZr0.9Y0.1O2.95 composite cathodes were among the lowest reported for protonic ceramic fuel cells cathodes in symmetrical cell configuration with ASR equal to 4.04 and 4.84 Ω·cm2 at 400 °C, and 0.21 and 0.27 Ω·cm2 at 600 °C, respectively.

2.
Materials (Basel) ; 11(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373541

RESUMO

The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3-δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3-δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3-δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm² at 400 °C and 0.16 and 0.32 Ω·cm² at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3-δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration.

3.
Materials (Basel) ; 9(3)2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28773279

RESUMO

The effect of the A-site cation ordering on the chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5+δ double perovskite was studied as a function of temperature and partial pressure of oxygen. Tetragonal A-site cation ordered layered LaBaCo2O5+δ double perovskite was obtained by annealing cubic A-site cation disordered La0.5Ba0.5CoO3-δ perovskite at 1100 °C in N2. High temperature X-ray diffraction between room temperature (RT) and 800 °C revealed that LaBaCo2O5+δ remains tetragonal during heating in oxidizing atmosphere, but goes through two phase transitions in N2 and between 450 °C and 675 °C from tetragonal P4/mmm to orthorhombic Pmmm and back to P4/mmm due to oxygen vacancy ordering followed by disordering of the oxygen vacancies. An anisotropic chemical and thermal expansion of LaBaCo2O5+δ was demonstrated. La0.5Ba0.5CoO3-δ remained cubic at the studied temperature irrespective of partial pressure of oxygen. LaBaCo2O5+δ is metastable with respect to La0.5Ba0.5CoO3-δ at oxidizing conditions inferred from the thermal evolution of the oxygen deficiency and oxidation state of Co in the two materials. The oxidation state of Co is higher in La0.5Ba0.5CoO3-δ resulting in a higher electrical conductivity relative to LaBaCo2O5+δ. The conductivity in both materials was reduced with decreasing partial pressure of oxygen pointing to a p-type semiconducting behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...