Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(30): 7994-7999, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38038093

RESUMO

Precise synchronization between a transmitter and receiver is crucial for quantum communications protocols such as quantum key distribution (QKD) to efficiently correlate the transmitted and received signals and increase the signal-to-noise ratio. In this work, we introduce a synchronization technique that exploits a co-propagating classical optical communications link and tests its performance in a free-space QKD system. Previously, existing techniques required additional laser beams or relied on the capability to retrieve the synchronization from the quantum signal itself; this approach, however, is not applicable in high channel loss scenarios. On the contrary, our method exploits classical and quantum signals locked to the same master clock, allowing the receiver to synchronize both the classical and quantum communications links by performing a clock-data-recovery routine on the classical signal. In this way, by exploiting the same classical communications already required for post-processing and key generation, no additional hardware is required, and the synchronization can be reconstructed from a high-power signal. Our approach is suitable for both satellite and fiber infrastructures, where a classical and quantum channel can be transmitted through the same link.

2.
Arq Bras Oftalmol ; 85(2): 103-108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34431892

RESUMO

PURPOSE: To evaluate the concentration of tear lysozyme in individuals with Sjogren´s syndrome, meibomian gland dysfunction, and non-dry-eye disease. METHODS: Ninety subjects were recruited for this study, including 30 with Sjogren´s syndrome, 30 with meibomian gland dysfunction, and 30 with non-dry-eye disease. All subjects were referred to participate in the study based on a "dry eye" investigation. They underwent a complete ocular surface ophthalmic examination encompassing ocular surface disease index, biomicroscopy, tear break-up time, Schirmer test type I, conjunctival vital staining with fluorescein and lissamine green, tear lysozyme concentration, and impression cytology. RESULTS: Clinical tests yielded the following results: ocular surface disease index Sjogren´s syndrome: 64.5 ± 22.6 meibomian gland dysfunction: 43.5 ± 21.4, non-dry-eye disease: 6.7 ± 4.3 (p=0.02 between groups); Schirmer I test (mm/5 min): Sjogren´s syndrome: 4.95 ± 2.25, meibomian gland dysfunction: 13.28 ± 1.53, non-dry-eye disease 13.70 ± 1.39 (p<0.01 Sjogren´s syndrome vs. non-dry-eye disease and p<0.01 meibomian gland dysfunction vs. non-dry-eye disease); tear break-up time (seconds): Sjogren´s syndrome: 3.97 ± 1.47, meibomian gland dysfunction: 3.95 ± 0.86, non-dry-eye disease: 7.25 ± 1.90 (p<0.01 Sjogren´s syndrome vs. non-dry-eye disease and p<0.01 meibomian gland dysfunction vs. non-dry-eye disease); Lissamine green score: Sjogren´s syndrome-dry-eye: 6.18 ± 2.14, meibomian gland dysfunction-dry-eye: 5.27 ± 1.27, non-dry-eye disease: 1.52 ± 0.97 (p<0.01 Sjogren´s syndrome vs. non-dry-eye disease and p<0.01 meibomian gland dysfunction vs. non-dry-eye disease); impression cytology score: Sjogren´s syndrome: 1.88 ± 0.92, meibomian gland dysfunction: 1.67 ± 0.56, non-dry-eye: 0.45 ± 0.44 (p<0.01 Sjogren´s syndrome vs. non-dry-eye disease and p<0.01 meibomian gland dysfunction vs. non-dry-eye disease) and; tear lysozyme concentration (µg/mL): Sjogren´s syndrome: 751.25 ± 244.73, meibomian gland dysfunction: 1423.67 ± 182.75, non-dry-eye disease: 1409.90 ± 188.21 (p<0.01 Sjogren´s syndrome vs. non-dry-eye disease and p<0.01 Sjogren´s syndrome vs. meibomian gland dysfunction). CONCLUSION: The concentration of lysozyme in the tears was lower in Sjögren's syndrome patients than in meibomian gland dysfunction and non-dry-eye disease groups. Hence, the lacrimal lysozyme could be considered as a simple, non-invasive, and economical biomarker to differentiate between Sjögren's syndrome dry eye disease and meibomian gland dysfunction dry eye disease.


Assuntos
Síndromes do Olho Seco , Disfunção da Glândula Tarsal , Síndrome de Sjogren , Síndromes do Olho Seco/diagnóstico , Humanos , Glândulas Tarsais , Muramidase , Síndrome de Sjogren/complicações , Lágrimas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...