Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 251-252: 106977, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029737

RESUMO

This research is focused on studying the preferred source regions and the pathways of the air masses with high particulate concentrations impacting on the activity concentrations of 7Be and 210Pb aerosols in Granada atmosphere. For this purpose, three different source-receptor methods have been used: Cluster Analysis, Potential Source Contribution Function (PSCF), and Concentration Weighted Trajectory (CWT). Air filter samples were weekly collected and analysed in Granada university (Spain 37.177N, 3.598 W, 687m a.s.l.) during 12 years (2006-2017) for the activity concentration of 7Be, and during 5 years (2010-2014) for the one of 210Pb. The time series of the collected data indicate that the concentration of both radiotracers present a cyclical and seasonal pattern, in association with their origins and atmospheric conditions. Clustering analysis showed that the air masses arriving to Granada can be classified as: (1) tropical continental air masses coming from the Mediterranean Sea, (2) tropical and warm polar maritime air masses produced over the Atlantic Ocean, and (3) continental air masses originated over Europe and Northern Africa. The PSCF and CWT methods confirmed that the main source areas of 7Be are located in the Atlantic coast of southern Morocco, and Northern Africa. On the other hand, southern France and the Algerian desert were found to be the main region sources of 210Pb. In addition, the Mediterranean Basin has been postulated as a strong source region for 7Be and 210Pb. Furthermore, the PSCF and CWT models show that the regions with larger 7Be/210Pb ratios are located in the Atlantic Ocean, due to frequent stratospheric intrusions specially during the winter months.


Assuntos
Poluentes Atmosféricos , Monitoramento de Radiação , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Humanos , Chumbo/análise , Material Particulado/análise , Estações do Ano , Espanha
2.
Appl Radiat Isot ; 187: 110313, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35717904

RESUMO

Lattice parameters of materials have the same magnitude as the energy of thermal neutrons in reactors, which directly affects the neutron cross section and its energy. While they are thermalized, incident neutrons can lose or gain energy during their interactions with materials components. Since several decades, methods and models were developed in the aim to generate nuclear data sub-libraries required in correcting neutrons interactions cross sections at thermal energies. However, very few experimental works were dedicated to this field. In this paper we focus our efforts on reviewing the theoretical models and their adequacy in describing thermal scattering events in the aim of proposing new formalisms to calculate the density of states (DOS) and phonon responses of zirconium hydride material, which constitutes an important moderator of neutrons in TRIGA reactors fuel elements. Generally the effects of thermal scattering are provided in nuclear data evaluations by a thermal sub-library ENDF file 7. Data in file 7 are described by the known thermal scattering law S(α,ß) which is a function of momentum transfer and energy transfer parameters α and ß respectively. The thermal scattering law has been used to calculate the double differential cross sections and the corresponding results are presented. Although the comparison with other models shows satisfactory results, no previously personalized use of data may be the raison of its usefulness in some cases and not in others.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...