Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 35(2): 301-308, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400879

RESUMO

We describe a general method to disclose the information hidden in Mueller matrices experimentally obtained from depolarizing samples. Although spectroscopic Mueller-matrix ellipsometry allows for a model-free characterization of inhomogeneous samples, i.e., independently from any assumption on the sample structure, the interpretation of the obtained results is often challenging. The proposed method combines three different decomposition techniques applied to the measured Mueller matrices in transmission and reflection of granular thin films with different thicknesses and densities. We demonstrate that the comparative analysis of the respective differential-, product-, and sum-decomposition of the Mueller matrices, together with correlation effects and the visualization as a Poincaré sphere, reveals the particular underlying physical processes of depolarization. As an example, we apply this method on granular BaSO4 thin films. This method is general and can be applied to a wide variety of intrinsically inhomogeneous materials with applications in physics, industry, biology, or medicine.

2.
Plasmonics ; 12(5): 1381-1390, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983227

RESUMO

The geometrical arrangement of metallic nanoparticles plays a crucial role on the optical response of nanoplasmonic samples due to particle-particle interactions. In this work, large-area, two-dimensional meta-glasses (random arrangements) and meta-crystals (periodic arrangements) made of identical metallic nanoparticles are investigated for three different particle densities of 5, 10, and 15 discs/µm2. A direct comparison between random and periodically ordered arrays is presented. The comparison clearly shows that the particle density has the largest influence on the extinction spectra for both periodic and random samples, and that for equal densities, the optical response away from diffraction effects is strikingly similar in both cases. The role of the radial density function and minimum particle distance is also determined. This study elucidates the role of the particle-particle interactions on the response of plasmonic nanoparticles and indicates how to control position and shape of the plasmonic resonance.

3.
Opt Express ; 25(6): 6983-6996, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381040

RESUMO

The interaction of nanostructures, periodic or random, with polarized light creates very rich physics where scattering, diffraction and absorbance are linked to a variety of dispersive modes and coupling effects. Each of these excitations depends strongly on polarization, angle of incidence, azimuthal orientation of the sample and wavelength. The entire optical response can be obtained, independently from any model, by measuring the Mueller matrices at various k-vectors over a broad frequency range. This results in complex data hiding the underlying physics. Here we present a simple but versatile method to identify the physical properties present in the Mueller matrices. This method is applicable to a wide variety of photonic and plasmonic samples. Based on the simple example of a one-dimensional gold grating where the optical response is characterized not only by diffraction but also by a complex mixing of polarization, we present a very general procedure to analyze the Mueller matrix data using simple analytical tools. The calculated Mueller matrix contour plots obtained from an effective anisotropic layer model are completed by the presence of plasmonic modes, Rayleigh-Woods anomalies and the interband transition absorbance. A comparison of the so-constructed contour plots with the measured ones satisfactorily connects the optical properties of the grating to their physical origin. This straightforward procedure is very general and will be powerful for the analysis of complex optical nanostructures.

4.
Opt Express ; 24(24): 28056-28064, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906371

RESUMO

Metallic nanostructures offer efficient solutions in polarization control with a very low thickness. In this report, we investigate the optical properties of a nano-fabricated plasmonic pseudo-depolarizer using Mueller matrix spectroscopic ellipsometry in transmission configuration. The depolarizer is composed of 256 square cells, each containing a periodically corrugated metallic film with random orientation. The full Mueller matrix was analyzed as a function of incident angle in a range between 0 and 20° and over the whole rotation angle range. Depolarization could be achieved in two visible wavelength regions around the short-range and long-range surface plasmon polariton frequencies, respectively. Furthermore, depolarization for circularly polarized light was 2.5 times stronger than that for linearly polarized light. Our results could work as a guidance for realizing a broadband high efficiency dielectric metasurface depolarizers.

5.
Nanotechnology ; 26(41): 415304, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26403979

RESUMO

A unique wafer-scale self-organization process for generation of InP nanopillars is demonstrated, which is based on maskless ion-beam etching (IBE) of InP developed to obtain the nanopillars, where the height, shape, and orientation of the nanopillars can be varied by controlling the processing parameters. The fabricated InP nanopillars exhibit broadband suppression of the reflectance, 'black InP,' a property useful for solar cells. The realization of a conformal p-n junction for carrier collection, in the fabricated solar cells, is achieved by a metalorganic vapor phase epitaxy (MOVPE) overgrowth step on the fabricated pillars. The conformal overgrowth retains the broadband anti-reflection property of the InP nanopillars, indicating the feasibility of this technology for solar cells. Surface passivation of the formed InP nanopillars using sulfur-oleylamine solution resulted in improved solar-cell characteristics. An open-circuit voltage of 0.71 V and an increase of 0.13 V compared to the unpassivated device were achieved.

6.
Nanoscale ; 7(10): 4566-71, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25687891

RESUMO

Tunable metal/dielectric composites are promising candidates for a large number of potential applications in electronics, sensor technologies and optical devices. Here we systematically investigate the dielectric properties of Ag-nanoparticles embedded in the highly flexible elastomer poly-dimethylsiloxane (PDMS). As tuning parameter we use uniaxial and biaxial strain applied to the composite. We demonstrate that both static variations of the filling factor and applied strain lead to the same behavior, i.e., the filling factor of the composite can be tuned by application of strain. In this way the effective static permittivity εeff of the composite can be varied over a very large range. Once the Poisson's ratio of the composite is known, the strain dependent dielectric constant can be accurately described by effective medium theory without any additional free fit parameter up to metal filling factors close to the percolation threshold. It is demonstrated that, starting above the percolation threshold in the metallic phase, applying strain provides the possibility to cross the percolation threshold into the insulating region. The change of regime from conductive phase down to insulating follows the description given by percolation theory and can be actively controlled.

7.
Opt Express ; 20(25): 27781-91, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23262723

RESUMO

We propose a novel method to guide THz radiation with low losses along thin layers of water. This approach is based on the coupling of evanescent surface fields at the opposite sides of the thin water layer surrounded by a dielectric material, which leads to a maximum field amplitude at the interfaces and a reduction of the energy density inside the water film. In spite of the strong absorption of water in this frequency range, calculations show that the field distribution can lead to propagation lengths of several centimeters. By means of attenuated total reflection measurements we demonstrate the coupling of incident THz radiation to the long-range surface guided modes across a layer of water with a thickness of 24 µm. This first demonstration paves the way for THz sensing in aqueous environments.


Assuntos
Modelos Teóricos , Refratometria/métodos , Propriedades de Superfície/efeitos da radiação , Radiação Terahertz , Espectroscopia Terahertz/métodos , Água/química , Ecologia/instrumentação , Ecologia/métodos , Desenho de Equipamento , Refratometria/instrumentação , Espectroscopia Terahertz/instrumentação
8.
Biomed Opt Express ; 3(11): 2937-49, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23162730

RESUMO

Current detection and identification of micro-organisms is based on either rather unspecific rapid microscopy or on more accurate but complex and time-consuming procedures. In a medical context, the determination of the bacteria Gram type is of significant interest. The diagnostic of microbial infection often requires the identification of the microbiological agent responsible for the infection, or at least the identification of its family (Gram type), in a matter of minutes. In this work, we propose to use terahertz frequency range antennas for the enhanced selective detection of bacteria types. Several microorganisms are investigated by terahertz time-domain spectroscopy: a fast, contactless and damage-free investigation method to gain information on the presence and the nature of the microorganisms. We demonstrate that plasmonic antennas enhance the detection sensitivity for bacterial layers and allow the selective recognition of the Gram type of the bacteria.

9.
Opt Express ; 20(5): 5052-60, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418310

RESUMO

Plasmonic bowtie antennas made of doped silicon can operate as plasmonic resonators at terahertz (THz) frequencies and provide large field enhancement close to their gap. We demonstrate both experimentally and theoretically that the field confinement close to the surface of the antenna enables the detection of ultrathin (100 nm) inorganic films, about 3750 times thinner than the free space wavelength. Based on model calculations, we conclude that the detection sensitivity and its variation with the thickness of the deposited layer are related to both the decay of the local THz field profile around the antenna and the local field enhancement in the gap of the bowtie antenna. This large field enhancement has the potential to improve the detection limits of plasmon-based biological and chemical sensors.


Assuntos
Condutometria/instrumentação , Dispositivos Ópticos , Semicondutores , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Radiação Terahertz
10.
ACS Nano ; 5(8): 6226-32, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21776964

RESUMO

We experimentally demonstrate the active control of the coupling strength between porphyrin dyes and surface plasmon polaritons supported by a thin gold layer. This control is externally exerted by a gas flow and is reversible. The hybridized exciton-polariton branches resulting from the exciton-plasmon coupling display a splitting proportional to the coupling strength of the light-matter interaction. The coupled system changes from the weak (no splitting) to the strong coupling regime (splitting of 130 meV) by controlling the effective oscillator strength in the dye layer, via exposure to nitrogen dioxide. The modification of the coupling strength of the system allows tailoring of the dispersion of the hybridized modes as well as of their group velocity.


Assuntos
Corantes/química , Elétrons , Porfirinas/química , Dióxido de Nitrogênio/química , Fenômenos Ópticos , Propriedades de Superfície
11.
Opt Express ; 18(22): 23226-35, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21164664

RESUMO

Localized surface plasmon polaritons (LSPPs) provide an efficient means of achieving extreme light concentration. In recent years, their active control has become a major aspiration of plasmonic research. Here, we demonstrate direct control of semiconductor bowtie antennas, enabling active excitation of LSPPs, at terahertz (THz) frequencies. We modify the LSPPs by ultrafast optical modulation of the free carrier density in the plasmonic structure itself, allowing for active control of the semiconductor antennas on picosecond timescales. Moreover, this control enables the manipulation of the field intensity enhancements in ranges of four orders of magnitude.

12.
Opt Express ; 18(3): 2797-807, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174108

RESUMO

Terahertz plasmonic resonances in semiconductor (indium antimonide, InSb) dimer antennas are investigated theoretically. The antennas are formed by two rods separated by a small gap. We demonstrate that, with an appropriate choice of the shape and dimension of the semiconductor antennas, it is possible to obtain large electromagnetic field enhancement inside the gap. Unlike metallic antennas, the enhancement around the semiconductor plasmonics antenna can be easily adjusted by varying the concentration of free carriers, which can be achieved by optical or thermal excitation of carriers or electrical carrier injection. Such active plasmonic antennas are interesting structures for THz applications such as modulators and sensors.

13.
Opt Lett ; 31(14): 2139-41, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16794705

RESUMO

The group index dispersion and birefringence of guided modes supported by straight photonic crystal (PhC) waveguides are theoretically and experimentally investigated as a function of the waveguide width within various reduced frequency domains. Within the photonic gap and far from the Brillouin zone edges, strongly confined modes supported by narrow PhC guides exhibit both a group index and a birefringence larger than those of a deep ridge. These two results evidence the contribution of the photonic gap to the guiding mechanism in the refractivelike domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...