Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 126(6): 2356-66, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183391

RESUMO

Palmoplantar keratoderma (PPK) are debilitating lesions that arise in individuals with pachyonychia congenita (PC) and feature upregulation of danger-associated molecular patterns and skin barrier regulators. The defining features of PC-associated PPK are reproduced in mice null for keratin 16 (Krt16), which is commonly mutated in PC patients. Here, we have shown that PPK onset is preceded by oxidative stress in footpad skin of Krt16-/- mice and correlates with an inability of keratinocytes to sustain nuclear factor erythroid-derived 2 related factor 2-dependent (NRF2-dependent) synthesis of the cellular antioxidant glutathione (GSH). Additionally, examination of plantar skin biopsies from individuals with PC confirmed the presence of high levels of hypophosphorylated NRF2 in lesional tissue. In Krt16-/- mice, genetic ablation of Nrf2 worsened spontaneous skin lesions and accelerated PPK development in footpad skin. Hypoactivity of NRF2 in Krt16-/- footpad skin correlated with decreased levels or activity of upstream NRF2 activators, including PKCδ, receptor for activated C kinase 1 (RACK1), and p21. Topical application of the NRF2 activator sulforaphane to the footpad of Krt16-/- mice prevented the development of PPK and normalized redox balance via regeneration of GSH from existing cellular pools. Together, these findings point to oxidative stress and dysfunctional NRF2 as contributors to PPK pathogenesis, identify K16 as a regulator of NRF2 activation, and suggest that pharmacological activation of NRF2 should be further explored for PC treatment.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Paquioníquia Congênita/metabolismo , Animais , Modelos Animais de Doenças , Glutationa/biossíntese , Humanos , Isotiocianatos/farmacologia , Queratina-16/genética , Queratina-16/metabolismo , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/metabolismo , Ceratodermia Palmar e Plantar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Paquioníquia Congênita/genética , Paquioníquia Congênita/patologia , Fenótipo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfóxidos
2.
Biofactors ; 41(6): 383-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648450

RESUMO

Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity.


Assuntos
Antioxidantes/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Pele/efeitos dos fármacos , Ubiquinona/análogos & derivados , Administração Tópica , Antioxidantes/metabolismo , Linhagem Celular , Suplementos Nutricionais , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Pele/metabolismo , Pele/patologia , Ubiquinona/administração & dosagem , Ubiquinona/metabolismo
3.
J Allergy Clin Immunol ; 131(6): 1547-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23582515

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common dermatosis that highly impairs a patient's quality of life. The recent discovery that epidermal barrier defects caused by an aberrant differentiation process of keratinocytes are comparably important to the well-characterized changes in immune response patterns attributed a crucial role to the keratinocytes. Fibroblasts are able to alter proliferation and differentiation of keratinocytes, but their role in AD is not yet fully understood. OBJECTIVE: We sought to determine the role of fibroblasts in skin proliferation and differentiation in patients with AD. METHODS: We used human 3-dimensional organotypic skin cultures consisting of atopic fibroblasts and healthy keratinocytes, as well as healthy fibroblasts and atopic keratinocytes, and compared them with their controls. The expression of differentiation markers in these organotypic cultures were analyzed by using immunohistology and quantitative RT-PCR. Furthermore, the fundamental role of fibroblast-secreted leukemia inhibitory factor was assessed by using small interfering RNA-mediated knockdown cultures. RESULTS: We observed that atopic fibroblasts influence the proliferation of keratinocytes and the terminal differentiation process, resulting in an in vivo-like morphology of AD. Subsequently, healthy fibroblasts were able to restore the structural deficits of the epidermis consisting of atopic keratinocytes. Partially, these effects were due to a reduced expression of the differentiation-associated cytokine leukemia inhibitory factor by atopic fibroblasts. CONCLUSION: These data demonstrate that fibroblasts and the modulation of fibroblast-derived factors might be new therapeutic targets for the alleviation of AD.


Assuntos
Dermatite Atópica/etiologia , Fibroblastos/metabolismo , Adulto , Diferenciação Celular , Proliferação de Células , Epiderme/metabolismo , Epiderme/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Queratinócitos/citologia , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...