Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(51): 9842-9850, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30466259

RESUMO

The photoexcitation, photoionization, and photofragmentation of gaseous CF3CF2C(O)OH were studied by means of synchrotron radiation in the valence and inner energy regions. Photofragmentation events were detected from 11.7 eV through formation of COH+, C2F4+, and the parent species M+. Because the vertical ionization potential has been reported at 11.94 eV, the starting energy used in this study, 11.7 eV, falls just inside of the tail of the ionization band in the photoelectron spectra. Information from the total ion yield spectra around the C 1s, O 1s, and F 1s ionization potentials allows the energies at which different resonance transitions take place in the molecule to be determined. These transitions have been assigned by comparison with the results of the analysis of similar compounds. In the inner energy region, both kinetic energy release (KER) values and the slope and shape of double coincidence islands obtained from photoelectron-photoion-photoion coincidence (PEPIPICO) spectra allow different photofragmentation mechanisms to be elucidated.

2.
J Phys Chem A ; 120(15): 2420-30, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27023801

RESUMO

The coexistence of two conformers in perfluoropropanoyl fluoride, CF3CF2C(O)F, differing in the CC-CF dihedral angle (gauche 85(10)% and anti 15(10)%), has been determined by means of gas-phase electron diffraction (GED). Quantum-chemical calculations performed at the MP2 and B3LYP approximations and cc-pVTZ basis sets reproduce the experimental values with confidence. By contrast, FTIR spectra give no clear evidence for the anti-conformer in the gas phase. Information on this less abundant but stable rotamer is obtained from matrix-isolation/FTIR spectroscopy and liquid Raman spectroscopy. In situ crystallization and single-crystal X-ray diffraction (XRD) data reveal the presence of solely the gauche-conformation in the solid state. A set of intermolecular interactions including C═O···C═O, C-F···F-C, and F···C═O is detected. The nature of bonding and the relative stabilities of gauche- and anti-conformers are explored using natural bond orbitals.

3.
Chemphyschem ; 17(10): 1463-7, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-26865044

RESUMO

Trichloromethyl thiocyanate, CCl3 SCN, was structurally studied in both the gas and crystal phases by means of gas electron diffraction (GED) and single-crystal X-ray diffraction (XRD), respectively. Both experimental studies and quantum chemical calculations indicate a staggered orientation of the CCl3 group relative to the SCN group. This conclusion is supported by the similarity of the C-SCN bond length to that of the anti-structure of CH2 ClSCN (Berrueta Martínez et al. Phys. Chem. Chem. Phys. 2015, 17, 15805-15812). Bond lengths and angles are similar for gas and crystal CCl3 SCN structures; however, the crystal structure presents different intermolecular interactions. These include halogen and chalcogen type interactions, the geometry of which was studied. Characteristic C-Y⋅⋅⋅N angles (Y=Cl or S) close to 180° provide evidence for typical σ-hole interactions along the halogen/chalcogen-carbon bond in N⋅⋅⋅Cl and N⋅⋅⋅S, intermolecular units.

4.
J Phys Chem A ; 119(29): 8021-30, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26121558

RESUMO

The unimolecular photofragmentation mechanisms of chlorosulfonyl isocyanate, ClSO2NCO, excited with tunable synchrotron radiation between 12 and 550 eV, were investigated by means of time-of-flight (TOF) coincidence techniques. The main fragmentation mechanism after single ionization, produced by irradiation of an effusive beam of the sample with synchrotron light in the valence electron region, occurs through the breaking of the Cl-S single bond, giving a chloride radical and a SO2NCO(+) fragment. This mechanism contrasts with the one observed for the related FSO2NCO, in which the rupture of the S-N bond originates the FSO2(+) fragment. The energies of the shallow- (S 2p, Cl 2p, and S 2s) and core-shell (C 1s, N 1s, and O 1s) electrons were determined by X-ray absorption. Transitions between these shallow and core electrons to unoccupied molecular orbitals were also observed in the total ion yield (TIY) spectra. Fourteen different fragmentation mechanisms of the doubly charged parent ion, ClSO2NCO(2+), were inferred from the bidimensional photoelectron-photoion-photoion-coincidence (PEPIPICO) spectra. The rupture of the S-N bond can evolve to form NCO(+)/SO2(•+), NCO(+)/SO(•+), or S(•+)/NCO(+) pairs of ions. The Cl-S bond breaking originates different mechanisms, Cl(+)/SO(•+), Cl(+)/S(•+), CO(•+)/S(•+), O(•+)/SO(•+), O(•+)/Cl(+), O(•+)/S(•+), C(•+)/S(•+), and C(•+)/O(•+) pairs being detected in coincidence as the final species. Another three coincidence islands can only be explained with an initial atomic rearrangement forming ClNCO(2+), ONCO(2+), and ClCO(2+), as precursors of CO(•+)/Cl(+), O(•+)/CO(•+), and C(•+)/Cl(+) pairs, respectively. The formation of Cl(•) radical is deduced from several mechanisms.

5.
J Phys Chem A ; 119(10): 1894-905, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679054

RESUMO

The main inner shell ionization edges of gaseous CF3CF2CF2C(O)Cl, including Cl 2p, C 1s, O 1s, and F 1s, have been measured in Total Ion Yield (TIY) mode by using tunable synchrotron radiation, and several resonance transitions have been assigned with the help of quantum chemical calculations. Interestingly, resonance transitions observed in the C 1s region can be assigned to different carbon atoms in the molecule according to the degree of fluorine substitution. Ionic photofragmentation processes have been studied by time-of-flight mass spectrometry in the Photoelectron-Photoion-Coincidence (PEPICO) and Photoelectron-Photoion-Photoion-Coincidence (PEPIPICO) modes. These techniques revealed a "memory-lost" effect especially around the C 1s region, since the fragmentation events are independent of the energy range considered. Moreover, different fragmentation mechanisms were inferred from these spectra in the valence (13.0-21.0 eV) as well as in the inner (180.0-750.0 eV) electronic energy regions. The vibrational spectral features of CF3CF2CF2C(O)Cl have been interpreted in terms of a conformational equilibrium between two conformations (gauche and anti of the CC single bond with respect to the CCl one) at room temperature, as determined from quantum chemical calculations and the detailed analysis of the infrared spectrum.

6.
Chemphyschem ; 16(2): 322-30, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25484030

RESUMO

Gaseous 2,2,2-trifluoroethanol (TFE) is excited with synchrotron radiation between 10 and 1000 eV and the ejected electrons and positive ions are detected in coincidence. In the valence-electron energy region, the most abundant species is CH2 OH(+) . Other fragments, including ions produced by atomic rearrangements, are also detected; the most abundant are COH(+) , CFH2 (+) and CF2 H2 (+) . The energies of electronic transitions from C 1 s, O 1 s and F 1 s orbitals to vacant molecular orbitals are determined. A site-specific C 1 s excitation is observed. The photofragmentation mechanisms after the excitation of core-shell electrons are inferred from analysis of the shape and slope of the coincidence between two charged fragments in the bi-dimensional coincidence spectra. The spectra are dominated by islands that correspond to the coincidence of H(+) with several charged fragments. One of the most important channels leads to the formation of CH2 OH(+) and CF3 (+) in a concerted mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...