Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107432, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825009

RESUMO

The Ca2+-activated Cl- channel regulator CLCA1 potentiates the activity of the Ca2+-activated Cl- channel (CaCC) TMEM16A by directly engaging the channel at the cell surface, inhibiting its reinternalization and increasing Ca2+-dependent Cl- current (ICaCC) density. We now present evidence of functional pairing between two other CLCA and TMEM16 protein family members, namely CLCA4 and the CaCC TMEM16B. Similar to CLCA1, (i) CLCA4 is a self-cleaving metalloprotease, and the N-terminal portion (N-CLCA4) is secreted; (ii) the von Willebrand factor type A (VWA) domain in N-CLCA4 is sufficient to potentiate ICaCC in HEK293T cells; and (iii) this is mediated by the metal ion-dependent adhesion site motif within VWA. The results indicate that, despite the conserved regulatory mechanism and homology between CLCA1 and CLCA4, CLCA4-dependent ICaCC are carried by TMEM16B, rather than TMEM16A. Our findings show specificity in CLCA/TMEM16 interactions and suggest broad physiological and pathophysiological links between these two protein families.

2.
Cell Rep ; 30(4): 1141-1151.e3, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31995732

RESUMO

The secreted protein calcium-activated chloride channel regulator 1 (CLCA1) utilizes a von Willebrand factor type A (VWA) domain to bind to and potentiate the calcium-activated chloride channel TMEM16A. To gain insight into this unique potentiation mechanism, we determined the 2.0-Å crystal structure of human CLCA1 VWA bound to Ca2+. The structure reveals the metal-ion-dependent adhesion site (MIDAS) in a high-affinity "open" conformation, engaging in crystal contacts that likely mimic how CLCA1 engages TMEM16A. The CLCA1 VWA contains a disulfide bond between α3 and α4 in close proximity to the MIDAS that is invariant in the CLCA family and unique in VWA structures. Further biophysical studies indicate that CLCA1 VWA is preferably stabilized by Mg2+ over Ca2+ and that α6 atypically extends from the VWA core. Finally, an analysis of TMEM16A structures suggests residues likely to mediate interaction with CLCA1 VWA.


Assuntos
Anoctamina-1/química , Anoctamina-1/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenômenos Biofísicos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Domínios Proteicos , Dobramento de Proteína
3.
Bioessays ; 40(10): e1800086, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30113067

RESUMO

Recent findings regarding the cellular biology and immunology of BST-2 (also known as tetherin) indicate that its function could be exploited as a universal replication inhibitor of enveloped respiratory viruses (e.g., influenza, respiratory syncytial virus, etc.). BST-2 inhibits viral replication by preventing virus budding from the plasma membrane and by inducing an antiviral state in cells adjacent to infection via unique inflammatory signaling mechanisms. This review presents the first comprehensive summary of what is currently known about BST-2 anti-viral function against respiratory viruses, how these viruses construct countermeasures to antagonize BST-2, and how BST-2 function might be targeted to develop therapies to treat respiratory virus infections. The authors address the current gaps in knowledge, including the need for mechanistic understanding of BST-2 antagonism by respiratory viruses, that should be bridged to achieve that goal.


Assuntos
Antígenos CD/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Infecções Respiratórias/virologia , Antígenos CD/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/fisiologia , Humanos , Terapia de Alvo Molecular/métodos , Transdução de Sinais , Vírion , Viroses/imunologia , Liberação de Vírus , Replicação Viral/efeitos dos fármacos
4.
J Biol Chem ; 292(22): 9164-9174, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28420732

RESUMO

Calcium-activated chloride channels (CaCCs) are key players in transepithelial ion transport and fluid secretion, smooth muscle constriction, neuronal excitability, and cell proliferation. The CaCC regulator 1 (CLCA1) modulates the activity of the CaCC TMEM16A/Anoctamin 1 (ANO1) by directly engaging the channel at the cell surface, but the exact mechanism is unknown. Here we demonstrate that the von Willebrand factor type A (VWA) domain within the cleaved CLCA1 N-terminal fragment is necessary and sufficient for this interaction. TMEM16A protein levels on the cell surface were increased in HEK293T cells transfected with CLCA1 constructs containing the VWA domain, and TMEM16A-like currents were activated. Similar currents were evoked in cells exposed to secreted VWA domain alone, and these currents were significantly knocked down by TMEM16A siRNA. VWA-dependent TMEM16A modulation was not modified by the S357N mutation, a VWA domain polymorphism associated with more severe meconium ileus in cystic fibrosis patients. VWA-activated currents were significantly reduced in the absence of extracellular Mg2+, and mutation of residues within the conserved metal ion-dependent adhesion site motif impaired the ability of VWA to potentiate TMEM16A activity, suggesting that CLCA1-TMEM16A interactions are Mg2+- and metal ion-dependent adhesion site-dependent. Increase in TMEM16A activity occurred within minutes of exposure to CLCA1 or after a short treatment with nocodazole, consistent with the hypothesis that CLCA1 stabilizes TMEM16A at the cell surface by preventing its internalization. Our study hints at the therapeutic potential of the selective activation of TMEM16A by the CLCA1 VWA domain in loss-of-function chloride channelopathies such as cystic fibrosis.


Assuntos
Canais de Cloreto/metabolismo , Magnésio/metabolismo , Mutação de Sentido Incorreto , Proteínas de Neoplasias/metabolismo , Substituição de Aminoácidos , Anoctamina-1 , Linhagem Celular , Canais de Cloreto/genética , Humanos , Proteínas de Neoplasias/genética , Domínios Proteicos , Estabilidade Proteica
5.
ACS Med Chem Lett ; 7(9): 852-6, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27660690

RESUMO

Traditional fragment-based drug discovery (FBDD) relies heavily on structural analysis of the hits bound to their targets. Herein, we present a complementary approach based on diversity-oriented synthesis (DOS). A DOS-based fragment collection was able to produce initial hit compounds against the target GSK3ß, allow the systematic synthesis of related fragment analogues to explore fragment-level structure-activity relationship, and finally lead to the synthesis of a more potent compound.

6.
Mediators Inflamm ; 2015: 497387, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26612971

RESUMO

Chloride transport proteins play critical roles in inflammatory airway diseases, contributing to the detrimental aspects of mucus overproduction, mucus secretion, and airway constriction. However, they also play crucial roles in contributing to the innate immune properties of mucus and mucociliary clearance. In this review, we focus on the emerging novel roles for a chloride channel regulator (CLCA1), a calcium-activated chloride channel (TMEM16A), and two chloride exchangers (SLC26A4/pendrin and SLC26A9) in chronic inflammatory airway diseases.


Assuntos
Antiporters/fisiologia , Asma/etiologia , Canais de Cloreto/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Proteínas de Neoplasias/fisiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Anoctamina-1 , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Humanos , Fator de Transcrição STAT6/fisiologia , Transportadores de Sulfato
7.
Cell Host Microbe ; 16(2): 187-200, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25121748

RESUMO

During antiviral defense, interferon (IFN) signaling triggers nuclear transport of tyrosine-phosphorylated STAT1 (PY-STAT1), which occurs via a subset of karyopherin alpha (KPNA) nuclear transporters. Many viruses, including Ebola virus, actively antagonize STAT1 signaling to counteract the antiviral effects of IFN. Ebola virus VP24 protein (eVP24) binds KPNA to inhibit PY-STAT1 nuclear transport and render cells refractory to IFNs. We describe the structure of human KPNA5 C terminus in complex with eVP24. In the complex, eVP24 recognizes a unique nonclassical nuclear localization signal (NLS) binding site on KPNA5 that is necessary for efficient PY-STAT1 nuclear transport. eVP24 binds KPNA5 with very high affinity to effectively compete with and inhibit PY-STAT1 nuclear transport. In contrast, eVP24 binding does not affect the transport of classical NLS cargo. Thus, eVP24 counters cell-intrinsic innate immunity by selectively targeting PY-STAT1 nuclear import while leaving the transport of other cargo that may be required for viral replication unaffected.


Assuntos
Ebolavirus/fisiologia , Fator de Transcrição STAT1/metabolismo , Proteínas Virais/química , alfa Carioferinas/química , Transporte Ativo do Núcleo Celular , Ligação Competitiva , Núcleo Celular/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Sinais de Localização Nuclear , Fosfoproteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Virais/metabolismo
8.
Sci Rep ; 2: 661, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22993687

RESUMO

Propagation of chromatin states through DNA replication is central to epigenetic regulation and can involve recruitment of chromatin proteins to replicating chromatin through interactions with replication fork components. Here we show using a fully reconstituted T7 bacteriophage system that eukaryotic proteins are not required to tether the Polycomb complex PRC1 to templates during DNA replication. Instead, DNA binding by PRC1 can withstand passage of a simple replication fork.


Assuntos
Replicação do DNA , DNA Viral/química , Proteínas do Grupo Polycomb/química , Bacteriófago T7/genética , Ligação Competitiva , DNA Helicases/química , DNA Polimerase Dirigida por DNA/química , Plasmídeos/química , Ligação Proteica , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...