Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(17): 7983-7989, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37624580

RESUMO

Surface functionalization with dipolar molecules is known to tune the electronic band alignment in semiconductor films and colloidal quantum dots. Yet, the influence of surface modification on plasmonic nanocrystals and their properties remains little explored. Here, we functionalize tin-doped indium oxide nanocrystals (ITO NCs) via ligand exchange with a series of cinnamic acids with different electron-withdrawing and -donating dipolar characters. Consistent with previous reports on semiconductors, we find that withdrawing (donating) ligands increase (decrease) the work function caused by an electrostatic potential shift across the molecular layer. Quantitative analyses of the plasmonic extinction spectra reveal that varying the ligand molecular dipole affects the near-surface depletion layer, with an anticorrelated trend between the electron concentration and electronic volume fraction, factors that are positively correlated in as-synthesized NCs. Electronic structure engineering through surface modification provides access to distinctive combinations of plasmonic properties that could enable optoelectronic applications, sensing, and hot electron-driven processes.

2.
J Chem Phys ; 158(2): 024903, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641404

RESUMO

Gelation offers a powerful strategy to assemble plasmonic nanocrystal networks incorporating both the distinctive optical properties of constituent building blocks and customizable collective properties. Beyond what a single-component assembly can offer, the characteristics of nanocrystal networks can be tuned in a broader range when two or more components are intimately combined. Here, we demonstrate mixed nanocrystal gel networks using thermoresponsive metal-terpyridine links that enable rapid gel assembly and disassembly with thermal cycling. Plasmonic indium oxide nanocrystals with different sizes, doping concentrations, and shapes are reliably intermixed in linked gel assemblies, exhibiting collective infrared absorption that reflects the contributions of each component while also deviating systematically from a linear combination of the spectra for single-component gels. We extend a many-bodied, mutual polarization method to simulate the optical response of mixed nanocrystal gels, reproducing the experimental trends with no free parameters and revealing that spectral deviations originate from cross-coupling between nanocrystals with distinct plasmonic properties. Our thermoreversible linking strategy directs the assembly of mixed nanocrystal gels with continuously tunable far- and near-field optical properties that are distinct from those of the building blocks or mixed close-packed structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...