Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 21(5): 786-96, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15139431

RESUMO

We discuss a general theoretical framework for representing and propagating fully coherent, fully incoherent, and the intermediate regime of partially coherent submillimeter-wave fields by means of general sampled basis functions, which may have any degree of completeness. Partially coherent fields arise when finite-throughput systems induce coherence on incoherent fields. This powerful extension to traditional modal analysis methods by using undercomplete Gaussian-Hermite modes can be employed to analyze and optimize such Gaussian quasi-optical techniques. We focus on one particular basis set, the Gabor basis, which consists of overlapping translated and modulated Gaussian beams. We present high-accuracy numerical results from field reconstructions and propagations. In particular, we perform one-dimensional analyses illustrating the Van Cittert-Zernike theorem and then extend our simulations to two dimensions, including simple models of horn and bolometer arrays. Our methods and results are of practical importance as a method for analyzing terahertz fields, which are often partially coherent and diffraction limited so that ray tracing is inaccurate and physical optics computationally prohibitive.

2.
J Opt Soc Am A Opt Image Sci Vis ; 21(2): 207-17, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14763763

RESUMO

A technique is described for representing the behavior of partially coherent optical systems by using overcomplete basis sets. The scheme is closely related to Gabor function theory. Through singular-value decomposition it is shown that if E is a matrix containing the sampled basis functions, then all of the information needed for optical calculations is contained in S = EE(dagger) and R = E(dagger)E. For overcomplete sets, S can be inverted to give a dual basis set, E = S(-1)E, which can be used to find the correlation matrix elements A of a sampled bimodal expansion of the spatial coherence function. Overcomplete correlation matrices can be scattered easily at optical components. They can be used to determine (i) the natural modes of a field; (ii) the total power in a field, Pt = Tr[RA]; (iii) the power coupled between two fields, A and B, that are in different states of coherence, Pc = Tr[RARB]; and (iv) the entropy of a field, Q = Tr[Zsigmar(I-Z)r/r], where Z = RA/Tr[RA].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...