Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3028, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231013

RESUMO

Optimizing the production of recombinant proteins is a problem of major industrial and pharmaceutical importance. Secretion of the protein by the host cell considerably simplifies downstream purification processes. However, for many proteins, this is also the limiting production step. Current solutions involve extensive engineering of the chassis cell to facilitate protein trafficking and limit protein degradation triggered by excessive secretion-associated stress. Here, we propose instead a regulation-based strategy in which induction is dynamically adjusted to an optimal strength based on the current stress level of the cells. Using a small collection of hard-to-secrete proteins, a bioreactor-based platform with automated cytometry measurements, and a systematic assay to quantify secreted protein levels, we demonstrate that the secretion sweet spot is indicated by the appearance of a subpopulation of cells that accumulate high amounts of proteins, decrease growth, and face significant stress, that is, experience a secretion burnout. In these cells, adaptations capabilities are overwhelmed by a too strong production. Using these notions, we show for a single-chain antibody variable fragment that secretion levels can be improved by 70% by dynamically keeping the cell population at optimal stress levels using real-time closed-loop control.


Assuntos
Reatores Biológicos , Anticorpos de Cadeia Única , Proteínas Recombinantes/metabolismo , Transporte Proteico , Anticorpos de Cadeia Única/metabolismo
2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37193545

RESUMO

Steady-state cell size and geometry depend on growth conditions. Here, we use an experimental setup based on continuous culture and single-cell imaging to study how cell volume, length, width and surface-to-volume ratio vary across a range of growth conditions including nitrogen and carbon titration, the choice of nitrogen source, and translation inhibition. Overall, we find cell geometry is not fully determined by growth rate and depends on the specific mode of growth rate modulation. However, under nitrogen and carbon titrations, we observe that the cell volume and the growth rate follow the same linear scaling.

3.
Nat Commun ; 13(1): 3363, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690608

RESUMO

Small-scale, low-cost bioreactors provide exquisite control of environmental parameters of microbial cultures over long durations. Their use is gaining popularity in quantitative systems and synthetic biology. However, existing setups are limited in their measurement capabilities. Here, we present ReacSight, a strategy to enhance bioreactor arrays for automated measurements and reactive experiment control. ReacSight leverages low-cost pipetting robots for sample collection, handling and loading, and provides a flexible instrument control architecture. We showcase ReacSight capabilities on three applications in yeast. First, we demonstrate real-time optogenetic control of gene expression. Second, we explore the impact of nutrient scarcity on fitness and cellular stress using competition assays. Third, we perform dynamic control of the composition of a two-strain consortium. We combine custom or chi.bio reactors with automated cytometry. To further illustrate ReacSight's genericity, we use it to enhance plate-readers with pipetting capabilities and perform repeated antibiotic treatments on a bacterial clinical isolate.


Assuntos
Reatores Biológicos , Biologia Sintética , Reatores Biológicos/microbiologia
4.
Nat Commun ; 13(1): 2199, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459274

RESUMO

Microscopy image analysis has recently made enormous progress both in terms of accuracy and speed thanks to machine learning methods and improved computational resources. This greatly facilitates the online adaptation of microscopy experimental plans using real-time information of the observed systems and their environments. Applications in which reactiveness is needed are multifarious. Here we report MicroMator, an open and flexible software for defining and driving reactive microscopy experiments. It provides a Python software environment and an extensible set of modules that greatly facilitate the definition of events with triggers and effects interacting with the experiment. We provide a pedagogic example performing dynamic adaptation of fluorescence illumination on bacteria, and demonstrate MicroMator's potential via two challenging case studies in yeast to single-cell control and single-cell recombination, both requiring real-time tracking and light targeting at the single-cell level.


Assuntos
Microscopia , Software , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Saccharomyces cerevisiae
5.
Proc Natl Acad Sci U S A ; 119(11): e2114438119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271387

RESUMO

SignificanceAt the single-cell level, biochemical processes are inherently stochastic. For many natural systems, the resulting cell-to-cell variability is exploited by microbial populations. In synthetic biology, however, the interplay of cell-to-cell variability and population processes such as selection or growth often leads to circuits not functioning as predicted by simple models. Here we show how multiscale stochastic kinetic models that simultaneously track single-cell and population processes can be obtained based on an augmentation of the chemical master equation. These models enable us to quantitatively predict complex population dynamics of a yeast optogenetic differentiation system from a specification of the circuit's components and to demonstrate how cell-to-cell variability can be exploited to purposefully create unintuitive circuit functionality.


Assuntos
Variação Biológica da População , Redes Reguladoras de Genes , Optogenética , Saccharomyces cerevisiae , Análise de Célula Única , Optogenética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Célula Única/métodos , Processos Estocásticos , Biologia Sintética
6.
Life Sci Alliance ; 5(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35228260

RESUMO

Cellular resources are limited and their relative allocation to gene expression programmes determines physiological states and global properties such as the growth rate. Here, we determined the importance of the growth rate in explaining relative changes in protein and mRNA levels in the simple eukaryote Schizosaccharomyces pombe grown on non-limiting nitrogen sources. Although expression of half of fission yeast genes was significantly correlated with the growth rate, this came alongside wide-spread nutrient-specific regulation. Proteome and transcriptome often showed coordinated regulation but with notable exceptions, such as metabolic enzymes. Genes positively correlated with growth rate participated in every level of protein production apart from RNA polymerase II-dependent transcription. Negatively correlated genes belonged mainly to the environmental stress response programme. Critically, metabolic enzymes, which represent ∼55-70% of the proteome by mass, showed mostly condition-specific regulation. In summary, we provide a rich account of resource allocation to gene expression in a simple eukaryote, advancing our basic understanding of the interplay between growth-rate-dependent and nutrient-specific gene expression.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Regulação Fúngica da Expressão Gênica , Nutrientes , Proteoma/genética , Proteoma/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcriptoma/genética
7.
Nat Commun ; 12(1): 5829, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611168

RESUMO

Artificial microbial consortia seek to leverage division-of-labour to optimize function and possess immense potential for bioproduction. Co-culturing approaches, the preferred mode of generating a consortium, remain limited in their ability to give rise to stable consortia having finely tuned compositions. Here, we present an artificial differentiation system in budding yeast capable of generating stable microbial consortia with custom functionalities from a single strain at user-defined composition in space and in time based on optogenetically-driven genetic rewiring. Owing to fast, reproducible, and light-tunable dynamics, our system enables dynamic control of consortia composition in continuous cultures for extended periods. We further demonstrate that our system can be extended in a straightforward manner to give rise to consortia with multiple subpopulations. Our artificial differentiation strategy establishes a novel paradigm for the creation of complex microbial consortia that are simple to implement, precisely controllable, and versatile to use.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Consórcios Microbianos/fisiologia
8.
PLoS Comput Biol ; 16(9): e1008245, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986690

RESUMO

Universal observations in Biology are sometimes described as "laws". In E. coli, experimental studies performed over the past six decades have revealed major growth laws relating ribosomal mass fraction and cell size to the growth rate. Because they formalize complex emerging principles in biology, growth laws have been instrumental in shaping our understanding of bacterial physiology. Here, we discovered a novel size law that connects cell size to the inverse of the metabolic proteome mass fraction and the active fraction of ribosomes. We used a simple whole-cell coarse-grained model of cell physiology that combines the proteome allocation theory and the structural model of cell division. This integrated model captures all available experimental data connecting the cell proteome composition, ribosome activity, division size and growth rate in response to nutrient quality, antibiotic treatment and increased protein burden. Finally, a stochastic extension of the model explains non-trivial correlations observed in single cell experiments including the adder principle. This work provides a simple and robust theoretical framework for studying the fundamental principles of cell size determination in unicellular organisms.


Assuntos
Fenômenos Fisiológicos Bacterianos , Escherichia coli , Modelos Biológicos , Modelos Moleculares , Antibacterianos/farmacologia , Meios de Cultura/farmacologia , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Proteoma/fisiologia , Ribossomos/fisiologia , Biologia de Sistemas
9.
Curr Biol ; 30(7): 1217-1230.e7, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32059768

RESUMO

Cell size varies during the cell cycle and in response to external stimuli. This requires the tight coordination, or "scaling," of mRNA and protein quantities with the cell volume in order to maintain biomolecule concentrations and cell density. Evidence in cell populations and single cells indicates that scaling relies on the coordination of mRNA transcription rates with cell size. Here, we use a combination of single-molecule fluorescence in situ hybridization (smFISH), time-lapse microscopy, and mathematical modeling in single fission yeast cells to uncover the precise molecular mechanisms that control transcription rates scaling with cell size. Linear scaling of mRNA quantities is apparent in single fission yeast cells during a normal cell cycle. Transcription of both constitutive and periodic genes is a Poisson process with transcription rates scaling with cell size and without evidence for transcriptional off states. Modeling and experimental data indicate that scaling relies on the coordination of RNA polymerase II (RNAPII) transcription initiation rates with cell size and that RNAPII is a limiting factor. We show using real-time quantitative imaging that size increase is accompanied by a rapid concentration-independent recruitment of RNAPII onto chromatin. Finally, we find that, in multinucleated cells, scaling is set at the level of single nuclei and not the entire cell, making the nucleus a determinant of scaling. Integrating our observations in a mechanistic model of RNAPII-mediated transcription, we propose that scaling of gene expression with cell size is the consequence of competition between genes for limiting RNAPII.


Assuntos
RNA Polimerase II/genética , RNA Fúngico/genética , Schizosaccharomyces/fisiologia , Transcrição Gênica , RNA Polimerase II/metabolismo , RNA Fúngico/metabolismo , Schizosaccharomyces/genética
10.
Bioinformatics ; 36(4): 1174-1181, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31584606

RESUMO

MOTIVATION: Normalization of single-cell RNA-sequencing (scRNA-seq) data is a prerequisite to their interpretation. The marked technical variability, high amounts of missing observations and batch effect typical of scRNA-seq datasets make this task particularly challenging. There is a need for an efficient and unified approach for normalization, imputation and batch effect correction. RESULTS: Here, we introduce bayNorm, a novel Bayesian approach for scaling and inference of scRNA-seq counts. The method's likelihood function follows a binomial model of mRNA capture, while priors are estimated from expression values across cells using an empirical Bayes approach. We first validate our assumptions by showing this model can reproduce different statistics observed in real scRNA-seq data. We demonstrate using publicly available scRNA-seq datasets and simulated expression data that bayNorm allows robust imputation of missing values generating realistic transcript distributions that match single molecule fluorescence in situ hybridization measurements. Moreover, by using priors informed by dataset structures, bayNorm improves accuracy and sensitivity of differential expression analysis and reduces batch effect compared with other existing methods. Altogether, bayNorm provides an efficient, integrated solution for global scaling normalization, imputation and true count recovery of gene expression measurements from scRNA-seq data. AVAILABILITY AND IMPLEMENTATION: The R package 'bayNorm' is publishd on bioconductor at https://bioconductor.org/packages/release/bioc/html/bayNorm.html. The code for analyzing data in this article is available at https://github.com/WT215/bayNorm_papercode. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA , Software , Teorema de Bayes , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Análise de Sequência de RNA , Análise de Célula Única
11.
Nat Microbiol ; 4(3): 480-491, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718845

RESUMO

Phenotypic cell-to-cell variability is a fundamental determinant of microbial fitness that contributes to stress adaptation and drug resistance. Gene expression heterogeneity underpins this variability but is challenging to study genome-wide. Here we examine the transcriptomes of >2,000 single fission yeast cells exposed to various environmental conditions by combining imaging, single-cell RNA sequencing and Bayesian true count recovery. We identify sets of highly variable genes during rapid proliferation in constant culture conditions. By integrating single-cell RNA sequencing and cell-size data, we provide insights into genes that are regulated during cell growth and division, including genes whose expression does not scale with cell size. We further analyse the heterogeneity of gene expression during adaptive and acute responses to changing environments. Entry into the stationary phase is preceded by a gradual, synchronized adaptation in gene regulation that is followed by highly variable gene expression when growth decreases. Conversely, sudden and acute heat shock leads to a stronger, coordinated response and adaptation across cells. This analysis reveals that the magnitude of global gene expression heterogeneity is regulated in response to different physiological conditions within populations of a unicellular eukaryote.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Schizosaccharomyces/genética , Análise de Sequência de RNA , Análise de Célula Única , Aclimatação/genética , Teorema de Bayes , Ciclo Celular/genética , Perfilação da Expressão Gênica , Resposta ao Choque Térmico , Schizosaccharomyces/fisiologia
12.
R Soc Open Sci ; 5(3): 172234, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657814

RESUMO

The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems.

13.
Bull Math Biol ; 80(5): 1134-1171, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29568983

RESUMO

Recently, hepatocyte-sinusoid alignment (HSA) has been identified as a mechanism that supports the coordination of hepatocytes during liver regeneration to reestablish a functional micro-architecture (Hoehme et al. in Proc Natl Acad Sci 107(23):10371-10376, 2010). HSA means that hepatocytes preferentially align along the closest micro-vessels. Here, we studied whether this mechanism is still active in early hepatocellular tumors. The same agent-based spatiotemporal model that previously correctly predicted HSA in liver regeneration was further developed to simulate scenarios in early tumor development, when individual initiated hepatocytes gain increased proliferation capacity. The model simulations were performed under conditions of realistic liver micro-architectures obtained from 3D reconstructions of confocal laser scanning micrographs. Interestingly, the established model predicted that initiated hepatocytes at first arrange in elongated patterns. Only when the tumor progresses to cell numbers of approximately 4000, does it adopt spherical structures. This prediction may have relevant consequences, since elongated tumors may reach critical structures faster, such as larger vessels, compared to a spherical tumor of similar cell number. Interestingly, this model prediction was confirmed by analysis of the spatial organization of initiated hepatocytes in a rat liver tumor initiation study using single doses of 250 mg/kg of the genotoxic carcinogen N-nitrosomorpholine (NNM). Indeed, small clusters of GST-P positive cells induced by NNM were elongated, almost columnar, while larger GDT-P positive foci of approximately the size of liver lobuli adopted spherical shapes. From simulations testing numerous possible mechanisms, only HSA could explain the experimentally observed initial deviation from spherical shape. The present study demonstrates that the architecture of small cell clusters of hepatocytes early after initiation is still controlled by physiological mechanisms. However, this coordinating influence is lost when the tumor grows to approximately 4000 cells, leading to further growth in spherical shape. Our findings stress the potential importance of organ micro-architecture in understanding tumor phenotypes.


Assuntos
Neoplasias Hepáticas Experimentais/patologia , Modelos Biológicos , Animais , Proliferação de Células , Simulação por Computador , Hepatócitos/patologia , Imageamento Tridimensional , Neoplasias Hepáticas Experimentais/irrigação sanguínea , Neoplasias Hepáticas Experimentais/etiologia , Regeneração Hepática , Conceitos Matemáticos , Fenótipo , Ratos
14.
Bioinformatics ; 33(13): 1980-1986, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28200026

RESUMO

MOTIVATION: Quantitative models are increasingly used in systems biology. Usually, these quantitative models involve many molecular species and their associated reactions. When simulating a tissue with thousands of cells, using these large models becomes computationally and time limiting. RESULTS: In this paper, we propose to construct abstractions using information theory notions. Entropy is used to discretize the state space and mutual information is used to select a subset of all original variables and their mutual dependencies. We apply our method to an hybrid model of TRAIL-induced apoptosis in HeLa cell. Our abstraction, represented as a Dynamic Bayesian Network (DBN), reduces the number of variables from 92 to 10, and accelerates numerical simulation by an order of magnitude, yet preserving essential features of cell death time distributions. AVAILABILITY AND IMPLEMENTATION: This approach is implemented in the tool DBNizer, freely available at http://perso.crans.org/genest/DBNizer . CONTACT: gregory.batt@inria.fr or bgenest@irisa.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Apoptose , Modelos Biológicos , Software , Biologia de Sistemas/métodos , Algoritmos , Entropia , Células HeLa , Humanos , Teoria da Informação
15.
PLoS Comput Biol ; 10(10): e1003893, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340343

RESUMO

Isogenic cells sensing identical external signals can take markedly different decisions. Such decisions often correlate with pre-existing cell-to-cell differences in protein levels. When not neglected in signal transduction models, these differences are accounted for in a static manner, by assuming randomly distributed initial protein levels. However, this approach ignores the a priori non-trivial interplay between signal transduction and the source of this cell-to-cell variability: temporal fluctuations of protein levels in individual cells, driven by noisy synthesis and degradation. Thus, modeling protein fluctuations, rather than their consequences on the initial population heterogeneity, would set the quantitative analysis of signal transduction on firmer grounds. Adopting this dynamical view on cell-to-cell differences amounts to recast extrinsic variability into intrinsic noise. Here, we propose a generic approach to merge, in a systematic and principled manner, signal transduction models with stochastic protein turnover models. When applied to an established kinetic model of TRAIL-induced apoptosis, our approach markedly increased model prediction capabilities. One obtains a mechanistic explanation of yet-unexplained observations on fractional killing and non-trivial robust predictions of the temporal evolution of cell resistance to TRAIL in HeLa cells. Our results provide an alternative explanation to survival via induction of survival pathways since no TRAIL-induced regulations are needed and suggest that short-lived anti-apoptotic protein Mcl1 exhibit large and rare fluctuations. More generally, our results highlight the importance of accounting for stochastic protein turnover to quantitatively understand signal transduction over extended durations, and imply that fluctuations of short-lived proteins deserve particular attention.


Assuntos
Apoptose/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Células HeLa , Humanos , Processos Estocásticos
16.
Mol Biol Evol ; 31(10): 2805-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25016583

RESUMO

Understanding the demographic history of populations and species is a central issue in evolutionary biology and molecular ecology. In this work, we develop a maximum-likelihood method for the inference of past changes in population size from microsatellite allelic data. Our method is based on importance sampling of gene genealogies, extended for new mutation models, notably the generalized stepwise mutation model (GSM). Using simulations, we test its performance to detect and characterize past reductions in population size. First, we test the estimation precision and confidence intervals coverage properties under ideal conditions, then we compare the accuracy of the estimation with another available method (MSVAR) and we finally test its robustness to misspecification of the mutational model and population structure. We show that our method is very competitive compared with alternative ones. Moreover, our implementation of a GSM allows more accurate analysis of microsatellite data, as we show that the violations of a single step mutation assumption induce very high bias toward false contraction detection rates. However, our simulation tests also showed some limits, which most importantly are large computation times for strong disequilibrium scenarios and a strong influence of some form of unaccounted population structure. This inference method is available in the latest implementation of the MIGRAINE software package.


Assuntos
Biologia Computacional/métodos , Funções Verossimilhança , Repetições de Microssatélites , Pongo/genética , Animais , Modelos Genéticos , Mutação , Densidade Demográfica , Software
17.
PLoS Comput Biol ; 9(5): e1003056, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675292

RESUMO

Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL). Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i) the relative order of caspases activation, (ii) the necessity of mitochondria outer membrane permeabilization (MOMP) for effector caspase activation, and (iii) the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the tool Breach. Such tools are well-adapted to the ever-increasing availability of heterogeneous knowledge on complex signal transduction pathways.


Assuntos
Apoptose/fisiologia , Biologia Computacional/métodos , Modelos Biológicos , Transdução de Sinais/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Lógica , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Semântica , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...