Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 20(6): 20230601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863347

RESUMO

Glycation reactions play a key role in the senescence process and are involved in numerous age-related pathologies, such as diabetes complications or Alzheimer's disease. As a result, past studies on glycation have mostly focused on human and laboratory animal models for medical purposes. Very little is known about glycation and its link to senescence in wild animal species. Yet, despite feeding on high-sugar diets, several bat and bird species are long-lived and seem to escape the toxic effects of high glycaemia. The study of these models could open new avenues both for understanding the mechanisms that coevolved with glycation resistance and for treating the damaging effects of glycations in humans. Our understanding of glycaemia's correlation to proxies of animals' pace of life is emerging in few wild species; however, virtually nothing is known about their resistance to glycation, nor on the relationship between glycation, species' life-history traits and individual fitness. Our review summarizes the scarce current knowledge on the links between glycation and life-history traits in non-conventional animal models, highlighting the predominance of avian research. We also investigate some key molecular and physiological parameters involved in glycation regulation, which hold promise for future research on fitness and senescence of individuals.


Assuntos
Características de História de Vida , Animais , Aves/fisiologia , Modelos Animais , Glicosilação , Envelhecimento , Produtos Finais de Glicação Avançada/metabolismo
2.
Commun Biol ; 6(1): 1062, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857885

RESUMO

In today's post-genomic era, it is crucial to rethink the concept of model organisms. While a few historically well-established organisms, e.g. laboratory rodents, have enabled significant scientific breakthroughs, there is now a pressing need for broader inclusion. Indeed, new organisms and models, from complex microbial communities to holobionts, are essential to fully grasp the complexity of biological principles across the breadth of biodiversity. By fostering collaboration between biology, advanced molecular science and omics communities, we can collectively adopt new models, unraveling their molecular functioning, and uncovering fundamental mechanisms. This concerted effort will undoubtedly enhance human health, environmental quality, and biodiversity conservation.


Assuntos
Biodiversidade , Microbiota , Humanos , Genômica , Genoma
3.
Proc Natl Acad Sci U S A ; 120(36): e2219298120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639591

RESUMO

The characteristics and fate of cancer cells partly depend on their environmental stiffness, i.e., the local mechanical cues they face. HepaRG progenitors are liver carcinoma cells exhibiting transdifferentiation properties; however, the underlying mechanisms remain unknown. To evaluate the impact of external physical forces mimicking the tumor microenvironment, we seeded them at very high density for 20 h, keeping the cells round and unanchored to the substrate. Applied without corticoids, spatial confinement due to very high density induced reprogramming of HepaRG cells into stable replicative stem-like cells after replating at normal density. Redifferentiation of these stem-like cells into cells very similar to the original HepaRG cells was then achieved using the same stress but in the presence of corticoids. This demonstrates that the cells retained the memory required to run the complete hepatic differentiation program, after bypassing the Hayflick limit twice. We show that physical stress improved chromosome quality and genomic stability, through greater efficiency of DNA repair and restoration of telomerase activity, thus enabling cells to escape progression to a more aggressive cancer state. We also show the primary importance of high-density seeding, possibly triggering compressive stress, in these processes, rather than that of cell roundness or intracellular tensional signals. The HepaRG-derived lines established here considerably extend the lifespan and availability of this surrogate cell system for mature human hepatocytes. External physical stress is a promising way to create a variety of cell lines, and it paves the way for the development of strategies to improve cancer prognosis.


Assuntos
Transdiferenciação Celular , Longevidade , Humanos , Diferenciação Celular , Linhagem Celular , Sinais (Psicologia)
4.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569818

RESUMO

Varroa destructor, a major ectoparasite of the Western honey bee Apis mellifera, is a widespread pest that damages colonies in the Northern Hemisphere. Throughout their lifecycle, V. destructor females feed on almost every developmental stage of their host, from the last larval instar to the adult. The parasite is thought to feed on hemolymph and fat body, although its exact diet and nutritional requirements are poorly known. Using artificial Parafilm™ dummies, we explored the nutrition of V. destructor females and assessed their survival when fed on hemolymph from bee larvae, pupae, or adults. We compared the results with mites fed on synthetic solutions or filtered larval hemolymph. The results showed that the parasites could survive for several days or weeks on different diets. Bee larval hemolymph yielded the highest survival rates, and filtered larval plasma was sufficient to maintain the mites for 14 days or more. This cell-free solution therefore theoretically contains all the necessary nutrients for mite survival. Because some bee proteins are known to be hijacked without being digested by the parasite, we decided to run a proteomic analysis of larval honey bee plasma to highlight the most common proteins in our samples. A list of 54 proteins was compiled, including several energy metabolism proteins such as Vitellogenin, Hexamerin, or Transferrins. These molecules represent key nutrient candidates that could be crucial for V. destructor survival.

5.
iScience ; 26(7): 107047, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37360691

RESUMO

We examined the effects of ∼30 days of spaceflight on glycogen synthase kinase 3 (GSK3) content and inhibitory serine phosphorylation in murine muscle and bone samples from four separate missions (BION-M1, rodent research [RR]1, RR9, and RR18). Spaceflight reduced GSK3ß content across all missions, whereas its serine phosphorylation was elevated with RR18 and BION-M1. The reduction in GSK3ß was linked to the reduction in type IIA fibers commonly observed with spaceflight as these fibers are particularly enriched with GSK3. We then tested the effects of inhibiting GSK3 before this fiber type shift, and we demonstrate that muscle-specific Gsk3 knockdown increased muscle mass, preserved muscle strength, and promoted the oxidative fiber type with Earth-based hindlimb unloading. In bone, GSK3 activation was enhanced after spaceflight; and strikingly, muscle-specific Gsk3 deletion increased bone mineral density in response to hindlimb unloading. Thus, future studies should test the effects of GSK3 inhibition during spaceflight.

6.
Sci Rep ; 13(1): 186, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604491

RESUMO

Position within the social group has consequences on individual lifespans in diverse taxa. This is especially obvious in eusocial insects, where workers differ in both the tasks they perform and their aging rates. However, in eusocial wasps, bees and ants, the performed task usually depends strongly on age. As such, untangling the effects of social role and age on worker physiology is a key step towards understanding the coevolution of sociality and aging. We performed an experimental protocol that allowed a separate analysis of these two factors using four groups of black garden ant (Lasius niger) workers: young foragers, old foragers, young nest workers, and old nest workers. We highlighted age-related differences in the proteome and metabolome of workers that were primarily related to worker subcaste and only secondarily to age. The relative abundance of proteins and metabolites suggests an improved xenobiotic detoxification, and a fuel metabolism based more on lipid use than carbohydrate use in young ants, regardless of their social role. Regardless of age, proteins related to the digestive function were more abundant in nest workers than in foragers. Old foragers were mostly characterized by weak abundances of molecules with an antibiotic activity or involved in chemical communication. Finally, our results suggest that even in tiny insects, extended lifespan may require to mitigate cancer risks. This is consistent with results found in eusocial rodents and thus opens up the discussion of shared mechanisms among distant taxa and the influence of sociality on life history traits such as longevity.


Assuntos
Formigas , Abelhas , Animais , Formigas/fisiologia , Envelhecimento/fisiologia , Comportamento Social , Fenótipo , Meio Social , Comportamento Animal/fisiologia
7.
Exp Gerontol ; 164: 111811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35472570

RESUMO

In humans, hyperglycemia is associated with protein glycation, which may contribute to aging. Strikingly, birds usually outlive mammals of the same body mass, while exhibiting high plasma glucose levels. However, how birds succeed in escaping pro-aging effects of glycation remains unknown. Using a specific mass spectrometry-based approach in captive zebra finches of known age, we recorded high glycaemia values but no glycated hemoglobin form was found. Still, we showed that zebra finch hemoglobin can be glycated in vitro, albeit only to a limited extent compared to its human homologue. This may be due to peculiar structural features, as supported by the unusual presence of three different tetramer populations with balanced proportions and a still bound cofactor that could be inositol pentaphosphate. High levels of the glycated forms of zebra finch plasma serotransferrin, carbonic anhydrase 2, and albumin were measured. Glucose, age or body mass correlations with either plasma glycated proteins or hemoglobin isoforms suggest that those variables may be future molecular tools of choice to monitor glycation and its link with individual fitness. Our molecular advance may help determine how evolution succeeded in associating flying ability, high blood glucose and long lifespan in birds.


Assuntos
Tentilhões , Hiperglicemia , Envelhecimento , Animais , Hemoglobinas Glicadas/metabolismo , Mamíferos , Espectrometria de Massas
8.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457071

RESUMO

Grey mouse lemurs (Microcebus murinus) are primates that respond to environmental energetic constraints through strong physiological seasonality. They notably fatten during early winter (EW), and mobilize their lipid reserves while developing glucose intolerance during late winter (LW), when food availability is low. To decipher how the hepatic mechanisms may support such metabolic flexibility, we analyzed the liver proteome of adult captive male mouse lemurs, whose seasonal regulations are comparable to their wild counterparts. We highlight profound hepatic changes that reflect fat accretion in EW at the whole-body level, without triggering an ectopic storage of fat in the liver, however. Moreover, molecular regulations are consistent with the decrease in liver glucose utilization in LW, and therefore with reduced tolerance to glucose. However, no major regulation was seen in insulin signaling/resistance pathways. Fat mobilization in LW appeared possibly linked to the reactivation of the reproductive system while enhanced liver detoxification may reflect an anticipation to return to summer levels of food intake. Overall, these results show that the physiology of mouse lemurs during winter relies on solid molecular foundations in liver processes to adapt fuel partitioning while opposing the development of a pathological state despite large lipid fluxes.


Assuntos
Cheirogaleidae , Animais , Cheirogaleidae/metabolismo , Glucose/metabolismo , Lipídeos , Fígado , Masculino , Estações do Ano
9.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614063

RESUMO

Activating transcription factor 4 (ATF4) is involved in muscle atrophy through the overexpression of some atrogenes. However, it also controls the transcription of genes involved in muscle homeostasis maintenance. Here, we explored the effect of ATF4 activation by the pharmacological molecule halofuginone during hindlimb suspension (HS)-induced muscle atrophy. Firstly, we reported that periodic activation of ATF4-regulated atrogenes (Gadd45a, Cdkn1a, and Eif4ebp1) by halofuginone was not associated with muscle atrophy in healthy mice. Secondly, halofuginone-treated mice even showed reduced atrophy during HS, although the induction of the ATF4 pathway was identical to that in untreated HS mice. We further showed that halofuginone inhibited transforming growth factor-ß (TGF-ß) signalling, while promoting bone morphogenetic protein (BMP) signalling in healthy mice and slightly preserved protein synthesis during HS. Finally, ATF4-regulated atrogenes were also induced in the atrophy-resistant muscles of hibernating brown bears, in which we previously also reported concurrent TGF-ß inhibition and BMP activation. Overall, we show that ATF4-induced atrogenes can be uncoupled from muscle atrophy. In addition, our data also indicate that halofuginone can control the TGF-ß/BMP balance towards muscle mass maintenance. Whether halofuginone-induced BMP signalling can counteract the effect of ATF4-induced atrogenes needs to be further investigated and may open a new avenue to fight muscle atrophy. Finally, our study opens the way for further studies to identify well-tolerated chemical compounds in humans that are able to fine-tune the TGF-ß/BMP balance and could be used to preserve muscle mass during catabolic situations.


Assuntos
Fator 4 Ativador da Transcrição , Atrofia Muscular , Ursidae , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Hibernação
10.
Cell Mol Life Sci ; 79(1): 29, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971425

RESUMO

The social organization of many primate, bird and rodent species and the role of individuals within that organization are associated with specific individual physiological traits. However, this association is perhaps most pronounced in eusocial insects (e.g., termites, ants). In such species, genetically close individuals show significant differences in behavior, physiology, and life expectancy. Studies addressing the metabolic changes according to the social role are still lacking. We aimed at understanding how sociality could influence essential molecular processes in a eusocial insect, the black garden ant (Lasius niger) where queens can live up to ten times longer than workers. Using mass spectrometry-based analysis, we explored the whole metabolome of queens, nest-workers and foraging workers. A former proteomics study done in the same species allowed us to compare the findings of both approaches. Confirming the former results at the proteome level, we showed that queens had fewer metabolites related to immunity. Contrary to our predictions, we did not find any metabolite linked to reproduction in queens. Among the workers, foragers had a metabolic signature reflecting a more stressful environment and a more highly stimulated immune system. We also found that nest-workers had more digestion-related metabolites. Hence, we showed that specific metabolic signatures match specific social roles. Besides, we identified metabolites differently expressed among behavioral castes and involved in nutrient sensing and longevity pathways (e.g., sirtuins, FOXO). The links between such molecular pathways and aging being found in an increasing number of taxa, our results confirm and strengthen their potential universality.


Assuntos
Formigas/imunologia , Formigas/metabolismo , Hierarquia Social , Sistema Imunitário/metabolismo , Comportamento Social , Animais , Comportamento Animal , Metaboloma , Metabolômica , Análise de Componente Principal
11.
Sci Rep ; 11(1): 18723, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548543

RESUMO

To investigate mechanisms by which hibernators avoid atherogenic hyperlipidemia during hibernation, we assessed lipoprotein and cholesterol metabolisms of free-ranging Scandinavian brown bears (Ursus arctos). In winter- and summer-captured bears, we measured lipoprotein sizes and sub-classes, triglyceride-related plasma-enzyme activities, and muscle lipid composition along with plasma-levels of antioxidant capacities and inflammatory markers. Although hibernating bears increased nearly all lipid levels, a 36%-higher cholesteryl-ester transfer-protein activity allowed to stabilize lipid composition of high-density lipoproteins (HDL). Levels of inflammatory metabolites, i.e., 7-ketocholesterol and 11ß-prostaglandin F2α, declined in winter and correlated inversely with cardioprotective HDL2b-proportions and HDL-sizes that increased during hibernation. Lower muscle-cholesterol concentrations and lecithin-cholesterol acyltransferase activity in winter suggest that hibernating bears tightly controlled peripheral-cholesterol synthesis and/or release. Finally, greater plasma-antioxidant capacities prevented excessive lipid-specific oxidative damages in plasma and muscles of hibernating bears. Hence, the brown bear manages large lipid fluxes during hibernation, without developing adverse atherogenic effects that occur in humans and non-hibernators.


Assuntos
Aterosclerose/prevenção & controle , Dislipidemias/prevenção & controle , Hibernação , Ursidae/fisiologia , Animais
12.
Front Cardiovasc Med ; 8: 687501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336951

RESUMO

Ischemic heart disease remains one of the leading causes of death worldwide. Despite intensive research on the treatment of acute myocardial infarction, no effective therapy has shown clinical success. Therefore, novel therapeutic strategies are required to protect the heart from reperfusion injury. Interestingly, despite physical inactivity during hibernation, brown bears (Ursus arctos) cope with cardiovascular physiological conditions that would be detrimental to humans. We hypothesized that bear serum might contain circulating factors that could provide protection against cell injury. In this study, we sought to determine whether addition of bear serum might improve cardiomyocyte survival following hypoxia-reoxygenation. Isolated mouse cardiomyocytes underwent 45 min of hypoxia followed by reoxygenation. At the onset of reoxygenation, cells received fetal bovine serum (FBS; positive control), summer (SBS) or winter bear serum (WBS), or adult serums of other species, as indicated. After 2 h of reoxygenation, propidium iodide staining was used to evaluate cell viability by flow cytometry. Whereas, 0.5% SBS tended to decrease reperfusion injury, 0.5% WBS significantly reduced cell death, averaging 74.04 ± 7.06% vs. 79.20 ± 6.53% in the FBS group. This cardioprotective effect was lost at 0.1%, became toxic above 5%, and was specific to the bear. Our results showed that bear serum exerts a therapeutic effect with an efficacy threshold, an optimal dose, and a toxic effect on cardiomyocyte viability after hypoxia-reoxygenation. Therefore, the bear serum may be a potential source for identifying new therapeutic molecules to fight against myocardial reperfusion injury and cell death in general.

13.
Cells ; 10(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440643

RESUMO

Muscle atrophy arises from a multiplicity of physio-pathological situations and has very detrimental consequences for the whole body. Although knowledge of muscle atrophy mechanisms keeps growing, there is still no proven treatment to date. This study aimed at identifying new drivers for muscle atrophy resistance. We selected an innovative approach that compares muscle transcriptome between an original model of natural resistance to muscle atrophy, the hibernating brown bear, and a classical model of induced atrophy, the unloaded mouse. Using RNA sequencing, we identified 4415 differentially expressed genes, including 1746 up- and 2369 down-regulated genes, in bear muscles between the active versus hibernating period. We focused on the Transforming Growth Factor (TGF)-ß and the Bone Morphogenetic Protein (BMP) pathways, respectively, involved in muscle mass loss and maintenance. TGF-ß- and BMP-related genes were overall down- and up-regulated in the non-atrophied muscles of the hibernating bear, respectively, and the opposite occurred for the atrophied muscles of the unloaded mouse. This was further substantiated at the protein level. Our data suggest TGF-ß/BMP balance is crucial for muscle mass maintenance during long-term physical inactivity in the hibernating bear. Thus, concurrent activation of the BMP pathway may potentiate TGF-ß inhibiting therapies already targeted to prevent muscle atrophy.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Hibernação , Atrofia Muscular/metabolismo , Músculo Quadríceps/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ursidae/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/genética , Atrofia Muscular/patologia , Músculo Quadríceps/patologia , RNA-Seq , Transdução de Sinais , Fatores de Tempo , Transcriptoma , Fator de Crescimento Transformador beta/genética , Ursidae/genética
14.
Front Mol Neurosci ; 14: 613161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912010

RESUMO

The cerebellum harbors a circadian clock that can be shifted by scheduled mealtime and participates in behavioral anticipation of food access. Large-scale two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry was used to identify day-night variations in the cerebellar proteome of mice fed either during daytime or nighttime. Experimental conditions led to modified expression of 89 cerebellar proteins contained in 63 protein spots. Five and 33 spots were changed respectively by time-of-day or feeding conditions. Strikingly, several proteins of the heat-shock protein family (i.e., Hsp90aa1, 90ab1, 90b1, and Hspa2, 4, 5, 8, 9) were down-regulated in the cerebellum of daytime food-restricted mice. This was also the case for brain fatty acid protein (Fabp7) and enzymes involved in oxidative phosphorylation (Ndufs1) or folate metabolism (Aldh1l1). In contrast, aldolase C (Aldoc or zebrin II) and pyruvate carboxylase (Pc), two enzymes involved in carbohydrate metabolism, and vesicle-fusing ATPase (Nsf) were up-regulated during daytime restricted feeding, possibly reflecting increased neuronal activity. Significant feeding × time-of-day interactions were found for changes in the intensity of 20 spots. Guanine nucleotide-binding protein G(o) subunit alpha (Gnao1) was more expressed in the cerebellum before food access. Neuronal calcium-sensor proteins [i.e., parvalbumin (Pvalb) and visinin-like protein 1 (Vsnl1)] were inversely regulated in daytime food-restricted mice, compared to control mice fed at night. Furthermore, expression of three enzymes modulating the circadian clockwork, namely heterogeneous nuclear ribonucleoprotein K (Hnrnpk), serine/threonine-protein phosphatases 1 (Ppp1cc and Ppp1cb subunits) and 5 (Ppp5), was differentially altered by daytime restricted feeding. Besides cerebellar proteins affected only by feeding conditions or daily cues, specific changes in in protein abundance before food access may be related to behavioral anticipation of food access and/or feeding-induced shift of the cerebellar clockwork.

15.
Front Physiol ; 12: 634953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679446

RESUMO

Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.

16.
Front Zool ; 17(1): 35, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33292302

RESUMO

In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly drive physiological adaptation to the hibernating state. In hibernating brown bears (Ursus arctos), we hypothesized that beyond an overall suppression of the ECS, seasonal shift in endocannabinoids compounds could be linked to bear's peculiar features that include hibernation without arousal episodes and capacity to react to external disturbance. We explored circulating lipids in serum and the ECS in plasma and metabolically active tissues in free-ranging subadult Scandinavian brown bears when both active and hibernating. In winter bear serum, in addition to a 2-fold increase in total fatty acid concentration, we found significant changes in relative proportions of circulating fatty acids, such as a 2-fold increase in docosahexaenoic acid C22:6 n-3 and a decrease in arachidonic acid C20:4 n-6. In adipose and muscle tissues of hibernating bears, we found significant lower concentrations of 2-arachidonoylglycerol (2-AG), a major ligand of cannabinoid receptors 1 (CB1) and 2 (CB2). Lower mRNA level for genes encoding CB1 and CB2 were also found in winter muscle and adipose tissue, respectively. The observed reduction in ECS tone may promote fatty acid mobilization from body fat stores, and favor carbohydrate metabolism in skeletal muscle of hibernating bears. Additionally, high circulating level of the endocannabinoid-like compound N-oleoylethanolamide (OEA) in winter could favor lipolysis and fatty acid oxidation in peripheral tissues. We also speculated on a role of OEA in the conservation of an anorexigenic signal and in the maintenance of torpor during hibernation, while sustaining the capacity of bears to sense stimuli from the environment.

17.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825252

RESUMO

Food deprivation resulting in muscle atrophy may be detrimental to health. To better understand how muscle mass is regulated during such a nutritional challenge, the current study deciphered muscle responses during phase 2 (P2, protein sparing) and phase 3 (P3, protein mobilization) of prolonged fasting in rats. This was done using transcriptomics analysis and a series of biochemistry measurements. The main findings highlight changes for plasma catabolic and anabolic stimuli, as well as for muscle transcriptome, energy metabolism, and oxidative stress. Changes were generally consistent with the intense use of lipids as fuels during P2. They also reflected increased muscle protein degradation and repressed synthesis, in a more marked manner during P3 than P2 compared to the fed state. Nevertheless, several unexpected changes appeared to be in favor of muscle protein synthesis during fasting, notably at the level of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, transcription and translation processes, and the response to oxidative stress. Such mechanisms might promote protein sparing during P2 and prepare the restoration of the protein compartment during P3 in anticipation of food intake for optimizing the effects of an upcoming refeeding, thereby promoting body maintenance and survival. Future studies should examine relevance of such targets for improving nitrogen balance during catabolic diseases.


Assuntos
Jejum/fisiologia , Proteínas Musculares/genética , Atrofia Muscular/genética , Estresse Oxidativo/genética , Animais , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hormônios/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/metabolismo , Estresse Oxidativo/fisiologia , Ratos Sprague-Dawley , Ureia/sangue
18.
J Proteome Res ; 19(8): 3438-3451, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609523

RESUMO

Muscle atrophy is a deleterious consequence of physical inactivity and is associated with increased morbidity and mortality. The aim of this study was to decipher the mechanisms involved in disuse muscle atrophy in eight healthy men using a 21 day bed rest with a cross-over design (control, with resistive vibration exercise (RVE), or RVE combined with whey protein supplementation and an alkaline salt (NEX)). The main physiological findings show a significant reduction in whole-body fat-free mass (CON -4.1%, RVE -4.3%, NEX -2.7%, p < 0.05), maximal oxygen consumption (CON -20.5%, RVE -6.46%, NEX -7.9%, p < 0.05), and maximal voluntary contraction (CON -15%, RVE -12%, and NEX -9.5%, p < 0.05) and a reduction in mitochondrial enzyme activity (CON -30.7%, RVE -31.3%, NEX -17%, p < 0.05). The benefits of nutrition and exercise countermeasure were evident with an increase in leg lean mass (CON -1.7%, RVE +8.9%, NEX +15%, p < 0.05). Changes to the vastus lateralis muscle proteome were characterized using mass spectrometry-based label-free quantitative proteomics, the findings of which suggest alterations to cell metabolism, mitochondrial metabolism, protein synthesis, and degradation pathways during bed rest. The observed changes were partially mitigated during RVE, but there were no significant pathway changes during the NEX trial. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD006882. In conclusion, resistive vibration exercise, when combined with whey/alkalizing salt supplementation, could be an effective strategy to prevent skeletal muscle protein changes, muscle atrophy, and insulin sensitivity during medium duration bed rest.


Assuntos
Repouso em Cama , Vibração , Repouso em Cama/efeitos adversos , Estudos Cross-Over , Suplementos Nutricionais , Humanos , Masculino , Músculo Esquelético , Proteoma , Soro do Leite , Proteínas do Soro do Leite
19.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32106110

RESUMO

We hypothesized that skeletal muscle contraction produces a cellular stress signal, triggering adipose tissue lipolysis to sustain fuel availability during exercise. The present study aimed at identifying exercise-regulated myokines, also known as exerkines, able to promote lipolysis. Human primary myotubes from lean healthy volunteers were submitted to electrical pulse stimulation (EPS) to mimic either acute intense or chronic moderate exercise. Conditioned media (CM) experiments with human adipocytes were performed. CM and human plasma samples were analyzed using unbiased proteomic screening and/or ELISA. Real-time qPCR was performed in cultured myotubes and muscle biopsy samples. CM from both acute intense and chronic moderate exercise increased basal lipolysis in human adipocytes. Growth and differentiation factor 15 (GDF15) gene expression and secretion increased rapidly upon skeletal muscle contraction. GDF15 protein was upregulated in CM from both acute and chronic exercise-stimulated myotubes. We further showed that physiological concentrations of recombinant GDF15 protein increased lipolysis in human adipose tissue, while blocking GDF15 with a neutralizing antibody abrogated EPS CM-mediated lipolysis. We herein provide the first evidence to our knowledge that GDF15 is a potentially novel exerkine produced by skeletal muscle contraction and able to target human adipose tissue to promote lipolysis.


Assuntos
Exercício Físico/fisiologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Lipólise/fisiologia , Músculo Esquelético/metabolismo , Adulto , Humanos , Masculino
20.
Biol Chem ; 401(3): 389-405, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31398141

RESUMO

Various pathophysiological situations of negative energy balance involve the intense depletion of the body's energy reserves. White adipose tissue is a central place to store energy and a major endocrine organ. As a model of choice to better understand how the white adipose tissue dynamically responds to changes in substrate availability, we used the prolonged fasting paradigm, which is characterized by successive periods of stimulated (phase 2) and then reduced (phase 3) lipid mobilization/utilization. Using omics analyses, we report a regulatory transcriptional program in rat epididymal (EPI) adipose tissue favoring lipolysis during phase 2 and repressing it during phase 3. Changes in gene expression levels of lipases, lipid droplet-associated factors, and the proteins involved in cAMP-dependent and cAMP-independent regulation of lipolysis are highlighted. The mRNA and circulating levels of adipose-secreted factors were consistent with the repression of insulin signaling during prolonged fasting. Other molecular responses are discussed, including the regulation of leptin and adiponectin levels, the specific changes reflecting an increased fibrinolysis and a possible protein catabolism-related energy saving mechanism in late fasting. Finally, some differences between internal and subcutaneous (SC) adipose tissues are also reported. These data provide a comprehensive molecular basis of adipose tissue responses when facing a major energetic challenge.


Assuntos
Tecido Adiposo/metabolismo , Jejum/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Animais , Masculino , Proteoma/genética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...