Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0388622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995240

RESUMO

Invasion of host cells is an important feature of Staphylococcus aureus. The main internalization pathway involves binding of the bacteria to host cells, e.g., endothelial cells, via a fibronectin (Fn) bridge between S. aureus Fn binding proteins and α5ß1-integrin, followed by phagocytosis. The secreted extracellular adherence protein (Eap) has been shown to promote this cellular uptake pathway of not only S. aureus, but also of bacteria otherwise poorly taken up by host cells, such as Staphylococcus carnosus. The exact mechanisms are still unknown. Previously, we demonstrated that Eap induces platelet activation by stimulation of the protein disulfide isomerase (PDI), a catalyst of thiol-disulfide exchange reactions. Here, we show that Eap promotes PDI activity on the surface of endothelial cells, and that this contributes critically to Eap-driven staphylococcal invasion. PDI-stimulated ß1-integrin activation followed by increased Fn binding to host cells likely accounts for the Eap-enhanced uptake of S. aureus into non-professional phagocytes. Additionally, Eap supports the binding of S. carnosus to Fn-α5ß1 integrin, thereby allowing its uptake into endothelial cells. To our knowledge, this is the first demonstration that PDI is crucial for the uptake of bacteria into host cells. We describe a hitherto unknown function of Eap-the promotion of an enzymatic activity with subsequent enhancement of bacterial uptake-and thus broaden mechanistic insights into its importance as a driver of bacterial pathogenicity. IMPORTANCE Staphylococcus aureus can invade and persist in non-professional phagocytes, thereby escaping host defense mechanisms and antibiotic treatment. The intracellular lifestyle of S. aureus contributes to the development of infection, e.g., in infective endocarditis or chronic osteomyelitis. The extracellular adherence protein secreted by S. aureus promotes its own internalization as well as that of bacteria that are otherwise poorly taken up by host cells, such as Staphylococcus carnosus. In our study, we demonstrate that staphylococcal uptake by endothelial cells requires catalytic disulfide exchange activity by the cell-surface protein disulfide isomerase, and that this critical enzymatic function is enhanced by Eap. The therapeutic application of PDI inhibitors has previously been investigated in the context of thrombosis and hypercoagulability. Our results add another intriguing possibility: therapeutically targeting PDI, i.e., as a candidate approach to modulate the initiation and/or course of S. aureus infectious diseases.


Assuntos
Adesinas Bacterianas , Infecções Estafilocócicas , Humanos , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Células Endoteliais/metabolismo , Staphylococcus aureus/metabolismo , Integrinas/metabolismo
2.
Sci Rep ; 8(1): 2185, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391581

RESUMO

Globalization and migration promote the spread of Panton-Valentine leukocidin (PVL)-positive Staphylococcus aureus strains. The toxin PVL is linked to the development of thrombosis in association with osteomyelitis. The mechanisms by which PVL drives thrombosis development are however still unknown. We demonstrate that PVL-damaged neutrophils activate platelets via neutrophil secretion products, such as α-defensins and the myeloperoxidase product HOCl, as well as the formation of HOCl-modified proteins. Neutrophil damage by PVL is blocked by anti-PVL-antibodies, explaining why especially young osteomyelitis patients with a low antibody titre against PVL suffer from thrombotic complications. Platelet activation in the presence of PVL-damaged neutrophils is prevented by α-defensin inhibitors and by glutathione and resveratrol, which are both inhibitors of HOCl-modified protein-induced platelet activation. Remarkably, intravenously infused glutathione also prevents activation of human platelets in an ex vivo assay. We here describe a new mechanism of PVL-neutrophil-platelet interactions, which might be extrapolated to other toxins that act on neutrophils. Our observations may make us think about new approaches to treat and/or prevent thrombotic complications in the course of infections with PVL-producing S. aureus strains.


Assuntos
Toxinas Bacterianas/farmacologia , Plaquetas/imunologia , Exotoxinas/farmacologia , Leucocidinas/farmacologia , Neutrófilos/imunologia , Osteomielite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Plaquetas/efeitos dos fármacos , Humanos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Osteomielite/imunologia , Osteomielite/patologia , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/efeitos dos fármacos
3.
Transfus Med Hemother ; 44(5): 351-357, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29070980

RESUMO

BACKGROUND: Hemarthrosis, or bleeding into the joints, is a hallmark of hemophilia. Heme triggers oxidative stress, inflammation, and destruction of cartilage and bone. The haptoglobin-CD163-heme oxygenase-1 (HO-1) pathway circumvents heme toxicity through enzymatic degradation of heme and transcription of antioxidant genes. Plasma-derived factor concentrates contain many proteins that might impact on cellular pathways in joints, blood, and vessels. METHODS: Activation of platelets from healthy volunteers was assessed by flow cytometry analysis of fibrinogen binding and CD62P expression. Platelet CXCL4 release was measured by ELISA. Human peripheral blood mononuclear cells were exposed to CXCL4 or platelet supernatants (untreated or pre-stimulated with factor VIII (FVIII) products) during their differentiation to macrophages and analyzed for CD163 expression. Some macrophage cultures were additionally incubated with autologous hemoglobin for 18 h for analysis of HO-1 expression. RESULTS: Platelet CXCL4 release was increased by all 8 tested plasma-derived FVIII products but not the 3 recombinant products. Macrophages exposed to supernatant from platelets treated with some plasma-derived FVIII products downregulated CD163 surface expression and failed to upregulate the athero- and joint protective enzyme HO-1 in response to hemoglobin. CONCLUSION: Plasma-derived FVIII products might promote bleeding-induced joint injury via generation of macrophages that are unable to counteract redox stress.

5.
Int J Med Microbiol ; 303(5): 230-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23684234

RESUMO

Staphylococcus aureus and Candida species are increasingly coisolated from implant-associated polymicrobial infections creating an incremental health care problem. Synergistic effects between both genera seem to facilitate the formation of mixed S. aureus-Candida biofilms, which is thought to play a critical role in coinfections with these microorganisms. To identify and characterize S. aureus factors involved in the interaction with Candida species, we affinity-panned an S. aureus phage display library against Candida biofilms in the presence or absence of fibrinogen. Repeatedly isolated clones contained DNA fragments encoding portions of the S. aureus fibrinogen-binding proteins coagulase or Efb. The coagulase binds to prothrombin in a 1:1 ratio thereby inducing a conformational change and non-proteolytic activation of prothrombin, which in turn cleaves fibrinogen to fibrin. Efb has been known to inhibit opsonization. To study the role of coagulase and Efb in the S. aureus-Candida cross-kingdom interaction, we performed flow-cytometric phagocytosis assays. Preincubation with coagulase reduced the phagocytosis of Candida yeasts by granulocytes significantly and dose-dependently. By using confocal laser scanning microscopy, we demonstrated that the coagulase mediated the formation of fibrin surrounding the candidal cells. Furthermore, the addition of Efb significantly protected the yeasts against phagocytosis by granulocytes in a dose-dependent and saturable fashion. In conclusion, the inhibition of phagocytosis of Candida cells by coagulase and Efb via two distinct mechanisms suggests that S. aureus might be beneficial for Candida to persist as it helps Candida to circumvent the host immune system.


Assuntos
Proteínas de Bactérias/metabolismo , Candida/fisiologia , Coagulase/metabolismo , Fibrinogênio/metabolismo , Interações Microbianas , Staphylococcus aureus/fisiologia , Candida/imunologia , Granulócitos/imunologia , Humanos , Fagocitose , Ligação Proteica , Staphylococcus aureus/imunologia
6.
Arterioscler Thromb Vasc Biol ; 32(8): 1979-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22539594

RESUMO

OBJECTIVE: Staphylococcus aureus can induce platelet aggregation. The rapidity and degree of this correlates with the severity of disseminated intravascular coagulation, and depends on platelet peptidoglycans. Surface-located thiol isomerases play an important role in platelet activation. The staphylococcal extracellular adherence protein (Eap) functions as an adhesin for host plasma proteins. Therefore we tested the effect of Eap on platelets. METHODS AND RESULTS: We found a strong stimulation of the platelet-surface thiol isomerases protein disulfide isomerase and endoplasmic reticulum stress proteins 57 and 72 by Eap. Eap induced thiol isomerase-dependent glycoprotein IIb/IIIa activation, granule secretion, and platelet aggregation. Treatment of platelets with thiol blockers, bacitracin, and anti-protein disulfide isomerase antibody inhibited Eap-induced platelet activation. The effect of Eap on platelets and protein disulfide isomerase activity was completely blocked by glycosaminoglycans. Inhibition by the hydrophobic probe bis(1-anilinonaphthalene 8-sulfonate) suggested the involvement of hydrophobic sites in protein disulfide isomerase and platelet activation by Eap. CONCLUSIONS: In the present study, we found an additional and yet unknown mechanism of platelet activation by a bacterial adhesin, involving stimulation of thiol isomerases. The thiol isomerase stimulatory and prothrombotic features of a microbial secreted protein are probably not restricted to S aureus and Eap. Because many microorganisms are coated with amyloidogenic proteins, it is likely that the observed mechanism is a more general one.


Assuntos
Proteínas de Bactérias/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/fisiologia , Proteínas de Ligação a RNA/farmacologia , Staphylococcus aureus/patogenicidade , Naftalenossulfonato de Anilina/farmacologia , Plaquetas/enzimologia , Ácido Ditionitrobenzoico/farmacologia , Humanos , Selectina-P/sangue , Proteoglicanas/farmacologia , Tetraspanina 30/sangue
7.
Thromb Haemost ; 104(2): 270-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20431851

RESUMO

Platelets bind to Candida albicans, the major cause of candidiasis. But in contrast to other microorganisms the fungus does not aggregate platelets. Gliotoxin (GT), which possesses immunosuppressive properties, is produced by various fungi, including the opportunistic pathogens Aspergillus fumigatus and C. albicans . Its mode of action involves the formation of mixed disulfides with host proteins. Disulfide exchanges play an important role in platelet activation. Therefore, the effect of C. albicans and GT on platelet function was tested. C. albicans yeast cells (5,000-10,000 cells/microl) and GT, in pathophysiologically relevant concentrations (0.05-0.5 microM), inhibited platelet fibrinogen binding, anti gp IIb/IIIa antibody PAC-1 binding, aggregation and procoagulant activity in a dose-dependent manner. Alpha granule release, measured via CD62P surface expression, was not affected. Addition of reduced glutathione partially counteracted the effect of C. albicans and GT on platelet fibrinogen binding and platelet aggregation. The C. albicans metabolite GT features antithrombotic properties in addition to its immunosuppressive functions. Since treatment with reduced glutathione partially counteracted the inhibitory effect of C. albicans yeast cells and GT on platelet fibrinogen binding, the antithrombotic activity is likely to depend on the disulfide bridge of this mycotoxin. GT production by C. albicans could contribute to its survival in the blood stream during vascular infections. The knowledge of the underlying mechanisms of the antithrombotic properties might help to treat fungal infections as well as thrombosis.


Assuntos
Plaquetas/metabolismo , Candida albicans/metabolismo , Fibrinolíticos/metabolismo , Gliotoxina/metabolismo , Ativação Plaquetária , Compostos de Sulfidrila/metabolismo , Anticorpos Monoclonais/metabolismo , Coagulação Sanguínea , Plaquetas/efeitos dos fármacos , Plaquetas/imunologia , Relação Dose-Resposta a Droga , Fibrinogênio/metabolismo , Fibrinolíticos/farmacologia , Gliotoxina/farmacologia , Glutationa/metabolismo , Humanos , Selectina-P/metabolismo , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/imunologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Fatores de Tempo
8.
PLoS One ; 4(10): e7567, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19851500

RESUMO

BACKGROUND: Staphylococci belong to the most important pathogens causing implant-associated infections. Colonization of the implanted medical devices by the formation of a three-dimensional structure made of bacteria and host material called biofilm is considered the most critical factor in these infections. To form a biofilm, bacteria first attach to the surface of the medical device, and then proliferate and accumulate into multilayered cell clusters. Biofilm accumulation may be mediated by polysaccharide and protein factors. METHODOLOGY/PRINCIPAL FINDINGS: The information on Staphylococcus aureus protein factors involved in biofilm accumulation is limited, therefore, we searched the S. aureus Col genome for LPXTG-motif containing potential surface proteins and chose the so far uncharacterized S. aureus surface protein C (SasC) for further investigation. The deduced SasC sequence consists of 2186 amino acids with a molecular mass of 238 kDa and has features typical of gram-positive surface proteins, such as an N-terminal signal peptide, a C-terminal LPXTG cell wall anchorage motif, and a repeat region consisting of 17 repeats similar to the domain of unknown function 1542 (DUF1542). We heterologously expressed sasC in Staphylococcus carnosus, which led to the formation of huge cell aggregates indicative of intercellular adhesion and biofilm accumulation. To localize the domain conferring cell aggregation, we expressed two subclones of sasC encoding either the N-terminal domain including a motif that is found in various architectures (FIVAR) or 8 of the DUF1542 repeats. SasC or its N-terminal domain, but not the DUF1542 repeat region conferred production of huge cell aggregates, higher attachment to polystyrene, and enhanced biofilm formation to S. carnosus and S. aureus. SasC does not mediate binding to fibrinogen, thrombospondin-1, von Willebrand factor, or platelets as determined by flow cytometry. CONCLUSIONS/SIGNIFICANCE: Thus, SasC represents a novel S. aureus protein factor involved in cell aggregation and biofilm formation, which may play an important role in colonization during infection with this important pathogen.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Aderência Bacteriana/genética , Sequência de Bases , Plaquetas/metabolismo , Clonagem Molecular , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Polissacarídeos/química , Poliestirenos/química , Homologia de Sequência de Aminoácidos , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...