Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Earth Space Chem ; 2(8): 764-777, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33615099

RESUMO

Terrestrial ecosystems are simultaneously the largest source and a major sink of volatile organic compounds (VOCs) to the global atmosphere, and these two-way fluxes are an important source of uncertainty in current models. Here, we apply high-resolution mass spectrometry (proton transfer reaction-quadrupole interface time-of-flight; PTR-QiTOF) to measure ecosystem-atmosphere VOC fluxes across the entire detected mass range (m/z 0-335) over a mixed temperate forest and use the results to test how well a state-of-science chemical transport model (GEOS-Chem CTM) is able to represent the observed reactive carbon exchange. We show that ambient humidity fluctuations can give rise to spurious VOC fluxes with PTR-based techniques and present a method to screen for such effects. After doing so, 377 of the 636 detected ions exhibited detectable gross fluxes during the study, implying a large number of species with active ecosystem-atmosphere exchange. We introduce the reactivity flux as a measure of how Earth-atmosphere fluxes influence ambient OH reactivity and show that the upward total VOC (∑VOC) carbon and reactivity fluxes are carried by a far smaller number of species than the downward fluxes. The model underpredicts the ∑VOC carbon and reactivity fluxes by 40-60% on average. However, the observed net fluxes are dominated (90% on a carbon basis, 95% on a reactivity basis) by known VOCs explicitly included in the CTM. As a result, the largest CTM uncertainties in simulating VOC carbon and reactivity exchange for this environment are associated with known rather than unrepresented species. This conclusion pertains to the set of species detectable by PTR-TOF techniques, which likely represents the majority in terms of carbon mass and OH reactivity, but not necessarily in terms of aerosol formation potential. In the case of oxygenated VOCs, the model severely underpredicts the gross fluxes and the net exchange. Here, unrepresented VOCs play a larger role, accounting for ~30% of the carbon flux and ~50% of the reactivity flux. The resulting CTM biases, however, are still smaller than those that arise from uncertainties for known and represented compounds.

2.
Environ Sci Technol ; 51(17): 9533-9542, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28732168

RESUMO

Multiphase reactions involving sea spray aerosol (SSA) impact trace gas budgets in coastal regions by acting as a reservoir for oxidized nitrogen and sulfur species, as well as being a source of halogen gases (HCl, ClNO2, etc.). Whereas most studies of multiphase reactions on SSA have focused on marine environments, far less is known about SSA transported inland. Herein, single-particle measurements of SSA are reported at a site >320 km from the Gulf of Mexico, with transport times of 7-68 h. Samples were collected during the Southern Oxidant and Aerosol Study (SOAS) in June-July 2013 near Centreville, Alabama. SSA was observed in 93% of 42 time periods analyzed. During two marine air mass periods, SSA represented significant number fractions of particles in the accumulation (0.2-1.0 µm, 11%) and coarse (1.0-10.0 µm, 35%) modes. Chloride content of SSA particles ranged from full to partial depletion, with 24% of SSA particles containing chloride (mole fraction of Cl/Na ≥ 0.1, 90% chloride depletion). Both the frequent observation of SSA at an inland site and the range of chloride depletion observed suggest that SSA may represent an underappreciated inland sink for NOx/SO2 oxidation products and a source of halogen gases.


Assuntos
Aerossóis , Poluentes Atmosféricos , Cloretos , Alabama , Halogênios , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...