Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 10(11): 10471-10479, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27797479

RESUMO

It has been well established that the early stages of nanoparticle-cell interactions are governed, at least in part, by the layer of proteins and other biomolecules adsorbed and slowly exchanged with the surrounding biological media (biomolecular corona). Subsequent to membrane interactions, nanoparticles are typically internalized into the cell and trafficked along defined pathways such as, in many cases, the endolysosomal pathway. Indeed, if the original corona is partially retained on the nanoparticle surface, the biomolecules in this layer may play an important role in determining subsequent cellular processing. In this work, using a combination of organelle separation and fluorescence labeling of the initial extracellular corona, we clarify its intracellular evolution as nanoparticles travel within the cell. We show that specific proteins present in the original protein corona are retained on the nanoparticles until they accumulate in lysosomes, and, once there, they are degraded. We also report on how different bare surfaces (amino and carboxyl modified) affect the details of this evolution. One overarching discovery is that the same serum proteins can exhibit different intracellular processing when carried inside cells by nanoparticles, as components of their corona, compared to what is observed when they are transported freely from the extracellular medium.


Assuntos
Lisossomos , Nanopartículas/química , Coroa de Proteína , Proteínas Sanguíneas , Organelas
2.
Small ; 10(16): 3307-15, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24737750

RESUMO

Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells.


Assuntos
Magnetismo , Nanopartículas , Organelas/metabolismo , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Transmissão
3.
Chembiochem ; 14(5): 568-72, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23420562

RESUMO

Put your coat on: It is well recognized that the surfaces of nanomaterials in biological media are covered by various biomolecules (e.g., proteins). A) The protein corona creates a shell over different nanomaterials, regardless of their physicochemical properties (e.g., composition and shape), resulting in reduced levels of amyloid beta fibril formation. B) Pristine nanomaterials might have acceleratory effects on the fibrillation of amyloid beta.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Nanoestruturas/química , Peptídeos beta-Amiloides/química , Fulerenos/química , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/química , Poliestirenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...