Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 11(2): 362-368, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38405391

RESUMO

Complex media have emerged as a powerful and robust framework to control light-matter interactions designed for task-specific optical functionalities. Studies on wavefront shaping through disordered systems have demonstrated optical wave manipulation capabilities beyond conventional optics, including aberration-free and subwavelength focusing. However, achieving arbitrary and simultaneous control over the spatial and temporal features of light remains challenging. In particular, no practical solution exists for field-level arbitrary spatiotemporal control of wave packets. A new paradigm shift has emerged in the terahertz frequency domain, offering methods for absolute time-domain measurements of the scattered electric field, enabling direct field-based wave synthesis. In this work, we report the experimental demonstration of field-level control of single-cycle terahertz pulses on arbitrary spatial points through complex disordered media.

2.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957120

RESUMO

The control of a lens's numerical aperture has potential applications in areas such as photography and imaging, displays, sensing, laser processing and even laser-implosion fusion. In such fields, the ability to control lens properties dynamically is of much interest, and active meta-lenses of various kinds are under investigation due to their modulation speed and compactness. However, as of yet, meta-lenses that explicitly offer dynamic control of a lens's numerical aperture have received little attention. Here, we design and simulate active meta-lenses (specifically, focusing meta-mirrors) using chalcogenide phase-change materials to provide such control. We show that, operating at a wavelength of 3000 nm, our devices can change the numerical aperture by up to a factor of 1.85 and operate at optical intensities of the order of 1.2 × 109 Wm-2. Furthermore, we show the scalability of our design towards shorter wavelengths (visible spectrum), where we demonstrate a change in NA by a factor of 1.92.

3.
ACS Photonics ; 9(8): 2634-2642, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996370

RESUMO

Scattering-assisted synthesis of broadband optical pulses is recognized to have a cross-disciplinary fundamental and application importance. Achieving full-waveform synthesis generally requires means for assessing the instantaneous electric field, i.e., the absolute electromagnetic phase. These are generally not accessible to established methodologies for scattering-assisted pulse envelope and phase shaping. The lack of field sensitivity also results in complex indirect approaches to evaluate the scattering space-time properties. The terahertz frequency domain potentially offers some distinctive new possibilities, thanks to the availability of methods to perform absolute measurements of the scattered electric field, as opposed to optical intensity-based diagnostics. An interesting conceptual question is whether this additional degree of freedom can lead to different types of methodologies toward wave shaping and direct field-waveform control. In this work, we theoretically investigate a deterministic scheme to achieve broadband, spatiotemporal waveform control of terahertz fields mediated by a scattering medium. Direct field access via time-domain spectroscopy enables a process in which the field and scattering matrix of the medium are assessed with minimal experimental efforts. Then, illumination conditions for an arbitrary targeted output field waveform are deterministically retrieved through numerical inversion. In addition, complete field knowledge enables reconstructing field distributions with complex phase profiles, as in the case of phase-only masks and optical vortices, a significantly challenging task for traditional implementations at optical frequencies based on intensity measurements aided with interferometric techniques.

4.
Science ; 377(6609): 924-925, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36007036

RESUMO

Laser cavities can be reverse engineered to create an efficient light trap.

5.
Opt Express ; 30(5): 7035-7043, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299475

RESUMO

In computational ghost imaging, the object is illuminated with a sequence of known patterns and the scattered light is collected using a detector that has no spatial resolution. Using those patterns and the total intensity measurement from the detector, one can reconstruct the desired image. Here we study how the reconstructed image is modified if the patterns used for the illumination are not the same as the reconstruction patterns and show that one can choose how to illuminate the object, such that the reconstruction process behaves like a spatial filtering operation on the image. The ability to directly measure a processed image allows one to bypass the post-processing steps and thus avoid any noise amplification they imply. As a simple example we show the case of an edge-detection filter.

6.
ACS Appl Mater Interfaces ; 14(2): 3446-3454, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34981913

RESUMO

Plasmonic metasurfaces based on the extraordinary optical transmission (EOT) effect can be designed to efficiently transmit specific spectral bands from the visible to the far-infrared regimes, offering numerous applications in important technological fields such as compact multispectral imaging, biological and chemical sensing, or color displays. However, due to their subwavelength nature, EOT metasurfaces are nowadays fabricated with nano- and micro-lithographic techniques, requiring many processing steps and carrying out in expensive cleanroom environments. In this work, we propose and experimentally demonstrate a novel, single-step process for the rapid fabrication of high-performance mid- and long-wave infrared EOT metasurfaces employing ultrafast direct laser writing. Microhole arrays composing extraordinary transmission metasurfaces were fabricated over an area of 4 mm2 in timescales of units of minutes, employing single pulse ablation of 40 nm thick Au films on dielectric substrates mounted on a high-precision motorized stage. We show how by carefully characterizing the influence of only three key experimental parameters on the processed micro-morphologies (namely, laser pulse energy, scan velocity, and beam shaping slit), we can have on-demand control of the optical characteristics of the extraordinary transmission effect in terms of transmission wavelength, quality factor, and polarization sensitivity of the resonances. To illustrate this concept, a set of EOT metasurfaces having different performances and operating in different spectral regimes has been successfully designed, fabricated, and tested. Comparison between transmittance measurements and numerical simulations has revealed that all the fabricated devices behave as expected, thus demonstrating the high performance, flexibility, and reliability of the proposed fabrication method. We believe that our findings provide the pillars for mass production of EOT metasurfaces with on-demand optical properties and create new research trends toward single-step laser fabrication of metasurfaces with alternative geometries and/or functionalities.

7.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670812

RESUMO

Materials of which the refractive indices can be thermally tuned or switched, such as in chalcogenide phase-change alloys, offer a promising path towards the development of active optical metasurfaces for the control of the amplitude, phase, and polarization of light. However, for phase-change metasurfaces to be able to provide viable technology for active light control, in situ electrical switching via resistive heaters integral to or embedded in the metasurface itself is highly desirable. In this context, good electrical conductors (metals) with high melting points (i.e., significantly above the melting point of commonly used phase-change alloys) are required. In addition, such metals should ideally have low plasmonic losses, so as to not degrade metasurface optical performance. This essentially limits the choice to a few noble metals, namely, gold and silver, but these tend to diffuse quite readily into phase-change materials (particularly the archetypal Ge2Sb2Te5 alloy used here), and into dielectric resonators such as Si or Ge. In this work, we introduce a novel hybrid dielectric/plasmonic metasurface architecture, where we incorporated a thin Ge2Sb2Te5 layer into the body of a cubic silicon nanoresonator lying on metallic planes that simultaneously acted as high-efficiency reflectors and resistive heaters. Through systematic studies based on changing the configuration of the bottom metal plane between high-melting-point diffusive and low-melting-point nondiffusive metals (Au and Al, respectively), we explicitly show how thermally activated diffusion can catastrophically and irreversibly degrade the optical performance of chalcogenide phase-change metasurface devices, and how such degradation can be successfully overcome at the design stage via the incorporation of ultrathin Si3N4 barrier layers between the gold plane and the hybrid Si/Ge2Sb2Te5 resonators. Our work clarifies the importance of diffusion of noble metals in thermally tunable metasurfaces and how to overcome it, thus helping phase-change-based metasurface technology move a step closer towards the realization of real-world applications.

8.
Appl Opt ; 58(29): 7957-7961, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31674347

RESUMO

We investigate the optimum emitter position within reflecting parabolic antennas whose size is comparable to the emission wavelength. Using finite-element modeling we calculate the dependence of the amount of power directed into a 20° half-angle cone on the emitter's position and compare with results obtained using geometrical optics. The spatially varying density of states within the wavelength-scale reflector is mapped and its impact discussed. In addition, it is demonstrated that changing the characteristic size of the reflector within the range from 0.5 to 1.5 times the emission wavelength has a strong bearing on the optimum emitter position, a position that does not in general coincide with the parabola's focus. We calculate that the optimal antenna size and emitter position allow for the maximum directed power to exceed that obtained in the geometrical optics regime.

9.
Interface Focus ; 9(1): 20180050, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30603070

RESUMO

The scattering strength of a random medium relies on the geometry and spatial distribution of its components as well as on their refractive index. Anisotropy can, therefore, play a major role in the optimization of the scattering efficiency in both biological and synthetic materials. In this study, we show that, by exploiting the coherent backscattering phenomenon, it is possible to characterize the optical anisotropy in Cyphochilus beetle scales without the need to change their orientation or their thickness. For this reason, such a static and easily accessible experimental approach is particularly suitable for the study of biological specimens. Moreover, estimation of the anisotropy in Cyphochilus beetle scales might provide inspiration for improving the scattering strength of artificial white materials.

10.
Nat Commun ; 10(1): 226, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644385

RESUMO

Conventional nanophotonic schemes minimise multiple scattering to realise a miniaturised version of beam-splitters, interferometers and optical cavities for light propagation and lasing. Here instead, we introduce a nanophotonic network built from multiple paths and interference, to control and enhance light-matter interaction via light localisation. The network is built from a mesh of subwavelength waveguides, and can sustain localised modes and mirror-less light trapping stemming from interference over hundreds of nodes. With optical gain, these modes can easily lase, reaching ~100 pm linewidths. We introduce a graph solution to the Maxwell's equation which describes light on the network, and predicts lasing action. In this framework, the network optical modes can be designed via the network connectivity and topology, and lasing can be tailored and enhanced by the network shape. Nanophotonic networks pave the way for new laser device architectures, which can be used for sensitive biosensing and on-chip optical information processing.

11.
ACS Photonics ; 5(10): 3984-3988, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30357007

RESUMO

Resonant cavities with high quality factor and small mode volume provide crucial enhancement of light-matter interactions in nanophotonic devices that transport and process classical and quantum information. The production of functional circuits containing many such cavities remains a major challenge, as inevitable imperfections in the fabrication detune the cavities, which strongly affects functionality such as transmission. In photonic crystal waveguides, intrinsic disorder gives rise to high-Q localized resonances through Anderson localization; however their location and resonance frequencies are completely random, which hampers functionality. We present an adaptive holographic method to gain reversible control on these randomly localized modes by locally modifying the refractive index. We show that our method can dynamically form or break highly transmitting necklace states, which is an essential step toward photonic-crystal-based quantum networks and signal processing circuits, as well as slow light applications and fundamental physics.

12.
Opt Express ; 26(8): 9866-9881, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715932

RESUMO

Fluorescence microscopy is widely used in biological imaging, however scattering from tissues strongly limits its applicability to a shallow depth. In this work we adapt a methodology inspired from stellar speckle interferometry, and exploit the optical memory effect to enable fluorescence microscopy through a turbid layer. We demonstrate efficient reconstruction of micrometer-size fluorescent objects behind a scattering medium in epi-microscopy, and study the specificities of this imaging modality (magnification, field of view, resolution) as compared to traditional microscopy. Using a modified phase retrieval algorithm to reconstruct fluorescent objects from speckle images, we demonstrate robust reconstructions even in relatively low signal to noise conditions. This modality is particularly appropriate for imaging in biological media, which are known to exhibit relatively large optical memory ranges compatible with tens of micrometers size field of views, and large spectral bandwidths compatible with emission fluorescence spectra of tens of nanometers widths.

13.
Opt Express ; 26(26): 33565-33574, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650789

RESUMO

Light scattering limits the penetration depth of non-invasive Raman spectroscopy in biological media. While safe levels of irradiation may be adequate to analyze superficial tissue, scattering of the pump beam reduces the Raman signal to undetectable levels deeper within the tissue. Here we demonstrate how wavefront shaping techniques can significantly increase the Raman signal at depth, while keeping the total irradiance constant, thus increasing the amount of Raman signal available for detection.

14.
Phys Rev E ; 96(2-1): 022122, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950489

RESUMO

We report on the transition between an Anderson localized regime and a conductive regime in a one-dimensional microwave scattering system with correlated disorder. We show experimentally that when long-range correlations are introduced, in the form of a power-law spectral density with power larger than 2, the localization length becomes much bigger than the sample size and the transmission peaks typical of an Anderson localized system merge into a pass band. As other forms of long-range correlations are known to have the opposite effect, i.e., to enhance localization, our results show that care is needed when discussing the effects of correlations, as different kinds of long-range correlations can give rise to very different behavior.

15.
Opt Express ; 24(5): 4662-4671, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092295

RESUMO

We study theoretically how multiple scattering of light in a disordered medium can spontaneously generate quantum correlations. In particular we focus on the case where the input state is Gaussian and characterize the correlations between two arbitrary output modes. As there is not a single all-inclusive measure of correlation, we characterise the output correlations with three measures: intensity fluctuations, entanglement, and quantum discord. We find that, while a coherent input state can not produce quantum correlations, any other Gaussian input will produce them in one form or another. This includes input states that are usually regarded as more classical than coherent ones, such as thermal states, which will produce a non-zero quantum discord.

16.
Opt Express ; 23(10): 13505-16, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074598

RESUMO

High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

17.
Opt Express ; 22(15): 17999-8009, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089419

RESUMO

We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.

18.
Nature ; 491(7423): 232-4, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23135468

RESUMO

Non-invasive optical imaging techniques, such as optical coherence tomography, are essential diagnostic tools in many disciplines, from the life sciences to nanotechnology. However, present methods are not able to image through opaque layers that scatter all the incident light. Even a very thin layer of a scattering material can appear opaque and hide any objects behind it. Although great progress has been made recently with methods such as ghost imaging and wavefront shaping, present procedures are still invasive because they require either a detector or a nonlinear material to be placed behind the scattering layer. Here we report an optical method that allows non-invasive imaging of a fluorescent object that is completely hidden behind an opaque scattering layer. We illuminate the object with laser light that has passed through the scattering layer. We scan the angle of incidence of the laser beam and detect the total fluorescence of the object from the front. From the detected signal, we obtain the image of the hidden object using an iterative algorithm. As a proof of concept, we retrieve a detailed image of a fluorescent object, comparable in size (50 micrometres) to a typical human cell, hidden 6 millimetres behind an opaque optical diffuser, and an image of a complex biological sample enclosed between two opaque screens. This approach to non-invasive imaging through strongly scattering media can be generalized to other contrast mechanisms and geometries.


Assuntos
Tomografia Óptica/métodos , Convallaria , Difusão , Fluorescência , Lasers , Caules de Planta
19.
Phys Rev Lett ; 108(11): 110604, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540452

RESUMO

Lévy flights constitute a broad class of random walks that occur in many fields of research, from biology to economy and geophysics. The recent advent of Lévy glasses allows us to study Lévy flights-and the resultant superdiffusion-using light waves. This raises several questions about the influence of interference on superdiffusive transport. Superdiffusive structures have the extraordinary property that all points are connected via direct jumps, which is expected to have a strong impact on interference effects such as weak and strong localization. Here we report on the experimental observation of weak localization in Lévy glasses and compare our results with a recently developed theory for multiple scattering in superdiffusive media. Experimental results are in good agreement with theory and allow us to unveil the light propagation inside a finite-size superdiffusive system.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 1): 011101, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20866559

RESUMO

Transport in random media is known to be affected by quenched disorder. From the point of view of random walks, quenching induces correlations between steps that may alter the dynamical properties of the medium. This paper is intended to provide more insight into the role of quenched disorder on superdiffusive transport in two-dimensional random media. The systems under consideration are disordered materials called Lévy glasses that exhibit large spatial fluctuations in the density of scattering elements. We show that in an ideal Lévy glass the influence of quenching can be neglected, in the sense that transport follows to very good approximation that of a standard Lévy walk. We also show that, by changing sample parameters, quenching effects can be increased intentionally, thereby making it possible to investigate systematically diverse regimes of transport. In particular, we find that strong quenching induces local trapping effects which slow down superdiffusion and lead to a transient subdiffusivelike transport regime close to the truncation time of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...