Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 4): 779-790, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843001

RESUMO

Understanding and controlling the structure and function of liquid interfaces is a constant challenge in biology, nanoscience and nanotechnology, with applications ranging from molecular electronics to controlled drug release. X-ray reflectivity and grazing incidence diffraction provide invaluable probes for studying the atomic scale structure at liquid-air interfaces. The new time-resolved laser system at the LISA liquid diffractometer situated at beamline P08 at the PETRA III synchrotron radiation source in Hamburg provides a laser pump with X-ray probe. The femtosecond laser combined with the LISA diffractometer allows unique opportunities to investigate photo-induced structural changes at liquid interfaces on the pico- and nanosecond time scales with pump-probe techniques. A time resolution of 38 ps has been achieved and verified with Bi. First experiments include laser-induced effects on salt solutions and liquid mercury surfaces with static and varied time scales measurements showing the proof of concept for investigations at liquid surfaces.

2.
ACS Nano ; 18(22): 14414-14426, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38760015

RESUMO

Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperature-dependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes' hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic-hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds.

3.
Angew Chem Int Ed Engl ; 63(24): e202319766, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598769

RESUMO

High-temperature dielectric polymers are in high demand for powering applications in extreme environments. Here, we have developed high-temperature homopolymer dielectrics with anisotropy by leveraging the hierarchical structure in semicrystalline polymers. The lamellae have been aligned parallel to the surface in the dielectric films. This structural arrangement resembles the horizontal alignment of nanosheet fillers in polymer nanocomposites and nanosheet-like lamellae in block copolymers, which has been proven to provide the optimal topological structure for electrical energy storage. The unique ordering of lamellae in our dielectric films endue a significantly increased breakdown strength and a reduced leakage current compared to amorphous films. This novel approach of enhancing the capacitive energy storage properties by controlled orientation of lamellae in homopolymer offers a new perspective for the design of high-temperature polymer dielectrics.

4.
J Appl Crystallogr ; 57(Pt 2): 314-323, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596729

RESUMO

X-ray reflectometry (XRR) is a powerful tool for probing the structural characteristics of nanoscale films and layered structures, which is an important field of nanotechnology and is often used in semiconductor and optics manufacturing. This study introduces a novel approach for conducting quantitative high-resolution millisecond monochromatic XRR measurements. This is an order of magnitude faster than in previously published work. Quick XRR (qXRR) enables real time and in situ monitoring of nanoscale processes such as thin film formation during spin coating. A record qXRR acquisition time of 1.4 ms is demonstrated for a static gold thin film on a silicon sample. As a second example of this novel approach, dynamic in situ measurements are performed during PMMA spin coating onto silicon wafers and fast fitting of XRR curves using machine learning is demonstrated. This investigation primarily focuses on the evolution of film structure and surface morphology, resolving for the first time with qXRR the initial film thinning via mass transport and also shedding light on later thinning via solvent evaporation. This innovative millisecond qXRR technique is of significance for in situ studies of thin film deposition. It addresses the challenge of following intrinsically fast processes, such as thin film growth of high deposition rate or spin coating. Beyond thin film growth processes, millisecond XRR has implications for resolving fast structural changes such as photostriction or diffusion processes.

5.
ACS Appl Mater Interfaces ; 16(7): 8913-8921, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335318

RESUMO

Mixed-halide perovskites of the composition MAPb(BrxI1-x)3, which seem to exhibit a random and uniform distribution of halide ions in the absence of light, segregate into bromide- and iodide-rich phases under illumination. This phenomenon of halide segregation has been widely investigated in the photovoltaics context since it is detrimental for the material properties and ultimately the device performance of these otherwise very attractive materials. A full understanding of the mechanisms and driving forces has remained elusive. In this work, a study of the crystallization pathways and the mixing behavior during deposition of MAPb(BrxI1-x)3 thin films with varying halide ratios is presented. In situ grazing incidence wide-angle scattering (GIWAXS) reveals the distinct crystallization behavior of mixed-halide perovskite compositions during two different fabrication routes: nitrogen gas-quenching and the lead acetate route. The perovskite phase formation of mixed-halide thin films hints toward a segregation tendency since separate crystallization pathways are observed for iodide- and bromide-rich phases within the mixed compositions. Crystallization of the bromide perovskite phase (MAPbBr3) is already observed during spin coating, while the iodide-based fraction of the composition forms solvent complexes as an intermediate phase, only converting into the perovskite phase upon thermal annealing. These parallel crystallization pathways result in mixed-halide perovskites forming from initially halide-segregated phases only under the influence of heating.

6.
Materials (Basel) ; 16(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068030

RESUMO

Ultrathin CoxFe3-xO4 films of high structural quality and with different Co content (x = 0.6-1.2) were prepared by reactive molecular beam epitaxy on MgO(001) substrates. Epitaxy of these ferrite films is extensively monitored by means of time-resolved (operando) X-ray diffraction recorded in out-of-plane geometry to characterize the temporal evolution of the film structure. The Co ferrite films show high crystalline ordering and smooth film interfaces independent of their Co content. All CoxFe3-xO4 films exhibit enhanced compressive out-of-plane strain during the early stages of growth, which partly releases with increasing film thickness. When the Co content of the ferrite films increases, the vertical-layer distances increase, accompanied by slightly increasing film roughnesses. The latter result is supported by surface-sensitive low-energy electron diffraction as well as X-ray reflectivity measurements on the final films. In contrast, the substrate-film interface roughness decreases with increasing Co content, which is confirmed with X-ray reflectivity measurements. In addition, the composition and electronic structure of the ferrite films is characterized by means of hard X-ray photoelectron spectroscopy performed after film growth. The experiments reveal the expected increasing Fe3+/Fe2+ cation ratios for a higher Co content.

7.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862478

RESUMO

We demonstrate a compact sample environment for the in situ study of crystallization kinetics of thin films on synchrotron beamlines, featuring atmospheric control, automated deposition, spin-coating, and annealing stages. The setup is suitable for studying thin film growth in real time using grazing-incidence X-ray diffraction techniques. Humidity and oxygen levels are being detected by sensors. The spinning stage exhibits low vertical oscillation amplitude (∼3µm at speeds up to 10 000 rpm) and can optionally be employed for antisolvent application or gas quenching to investigate the impact of these techniques, which are often used to assist thin film growth. Differential reflectance spectroscopy is implemented in the spin-coater environment for inspecting thin film thickness and optical properties. The infrared radiation-based annealing system consists of a halogen lamp and a holder with an adjustable lamp-to-sample distance, while the sample surface temperature is monitored by a pyrometer. All features of the sample environment can be controlled remotely by the control software at synchrotron beamlines. In order to test and demonstrate the performance, the crystallization pathway of the antisolvent-assisted MAPbI3 (MA = methylammonium) perovskite thin film during the spinning and annealing stages is monitored and discussed.

8.
Phys Rev Lett ; 131(12): 126302, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802962

RESUMO

Traditionally, the Coulomb repulsion or Peierls instability causes the metal-insulator phase transitions in strongly correlated quantum materials. In comparison, magnetic stress is predicted to drive the metal-insulator transition in materials exhibiting strong spin-lattice coupling. However, this mechanism lacks experimental validation and an in-depth understanding. Here we demonstrate the existence of the magnetic stress-driven metal-insulator transition in an archetypal material, chromium nitride. Structural, magnetic, electronic transport characterization, and first-principles modeling analysis show that the phase transition temperature in CrN is directly proportional to the strain-controlled anisotropic magnetic stress. The compressive strain increases the magnetic stress, leading to the much-coveted room-temperature transition. In contrast, tensile strain and the inclusion of nonmagnetic cations weaken the magnetic stress and reduce the transition temperature. This discovery of a new physical origin of metal-insulator phase transition that unifies spin, charge, and lattice degrees of freedom in correlated materials marks a new paradigm and could lead to novel device functionalities.

9.
ACS Nano ; 17(16): 16080-16088, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37523736

RESUMO

Epitaxially grown self-assembled semiconductor quantum dots (QDs) with atom-like optical properties have emerged as the best choice for single-photon sources required for the development of quantum technology and quantum networks. Nondestructive selection of a single QD having desired structural, compositional, and optical characteristics is essential to obtain noise-free, fully indistinguishable single or entangled photons from single-photon emitters. Here, we show that the structural orientations and local compositional inhomogeneities within a single QD and the surrounding wet layer can be probed in a screening fashion by scanning X-ray diffraction microscopy and X-ray fluorescence with a few tens of nanometers-sized synchrotron radiation beam. The presented measurement protocol can be used to cull the best single QD from the enormous number of self-assembled dots grown simultaneously. The obtained results show that the elemental composition and resultant strain profiles of a QD are sensitive to in-plane crystallographic directions. We also observe that lattice expansion after a certain composition-limit introduces shear strain within a QD, enabling the possibility of controlled chiral-QD formation. Nanoscale chirality and compositional anisotropy, contradictory to common assumptions, need to be incorporated into existing theoretical models to predict the optical properties of single-photon sources and to further tune the epitaxial growth process of self-assembled quantum structures.

10.
Angew Chem Int Ed Engl ; 62(27): e202305353, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37186081

RESUMO

Chiral inorganic superstructures have received considerable interest due to the chiral communication between inorganic compounds and chiral organic additives. However, the demanding fabrication and complex multilevel structure seriously hinder the understanding of chiral transfer and self-assembly mechanisms. Herein, we use chiral CuO superstructures as a model system to study the formation process of hierarchical chiral structures. Based on a simple and mild synthesis route, the time-resolved morphology and the in situ chirality evolution could be easily followed. The morphology evolution of the chiral superstructure involves hierarchical assembly, including primary nanoparticles, intermediate bundles, and superstructure at different growth stages. Successive redshifts and enhancements of the CD signal support chiral transfer from the surface penicillamine to the inorganic superstructure. Full-field electro-dynamical simulations reproduced the structural chirality and allowed us to predict its modulation. This work opens the door to a large family of chiral inorganic materials where chiral molecule-guided self-assembly can be specifically designed to follow a bottom-up chiral transfer pathway.

11.
Adv Sci (Weinh) ; 10(17): e2206325, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078840

RESUMO

Metal halide perovskites are an emerging class of crystalline semiconductors of great interest for application in optoelectronics. Their properties are dictated not only by their composition, but also by their crystalline structure and microstructure. While significant efforts are dedicated to the development of strategies for microstructural control, significantly less is known about the processes that govern the formation of their crystalline structure in thin films, in particular in the context of crystalline orientation. This work investigates the formation of highly oriented triple cation perovskite films fabricated by utilizing a range of alcohols as an antisolvent. Examining the film formation by in situ grazing-incidence wide-angle X-ray scattering reveals the presence of a short-lived highly oriented crystalline intermediate, which is identified as FAI-PbI2 -xDMSO. The intermediate phase templates the crystallization of the perovskite layer, resulting in highly oriented perovskite layers. The formation of this dimethylsulfoxide (DMSO) containing intermediate is triggered by the selective removal of N,N-dimethylformamide (DMF) when alcohols are used as an antisolvent, consequently leading to differing degrees of orientation depending on the antisolvent properties. Finally, this work demonstrates that photovoltaic devices fabricated from the highly oriented films, are superior to those with a random polycrystalline structure in terms of both performance and stability.

12.
J Phys Chem Lett ; 14(8): 2065-2071, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36798987

RESUMO

Three different platinum oxides are observed by in situ X-ray diffraction during electrochemical potential cycles of platinum thin film model electrodes on yttria-stabilized zirconia (YSZ) at a temperature of 702 K in air. Scanning electron microscopy and atomic force microscopy performed before and after the in situ electrochemical X-ray experiments indicate that approximately 20% of the platinum electrode has locally delaminated from the substrate by forming pyramidlike blisters. The oxides and their locations are identified as (1) an ultrathin PtOx at the buried Pt/YSZ interface, which forms reversibly upon anodic polarization; (2) polycrystalline ß-PtO2, which forms irreversibly upon anodic polarization on the inside of the blisters; and (3) an ultrathin α-PtO2 at the Pt/air interface, which forms by thermal oxidation and which does not depend on the electrochemical polarization. Thermodynamic and kinetic aspects are discussed to explain the coexistence of multiple phases at the same electrochemical conditions.

13.
J Appl Crystallogr ; 55(Pt 2): 362-369, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35497655

RESUMO

The Python package mlreflect is demonstrated, which implements an optimized pipeline for the automated analysis of reflectometry data using machine learning. The package combines several training and data treatment techniques discussed in previous publications. The predictions made by the neural network are accurate and robust enough to serve as good starting parameters for an optional subsequent least-mean-squares (LMS) fit of the data. For a large data set of 242 reflectivity curves of various thin films on silicon substrates, the pipeline reliably finds an LMS minimum very close to a fit produced by a human researcher with the application of physical knowledge and carefully chosen boundary conditions. The differences between simulated and experimental data and their implications for the training and performance of neural networks are discussed. The experimental test set is used to determine the optimal noise level during training. The extremely fast prediction times of the neural network are leveraged to compensate for systematic errors by sampling slight variations in the data.

14.
Materials (Basel) ; 15(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35407710

RESUMO

In this work, we present a comprehensive study on real-time monitoring the growth of epitaxial CoxFe3-xO4 thin films grown on SrTiO3(001) substrates via reactive molecular beam epitaxy. The growth process was monitored during evaporation by means of time resolved operando hard X-ray photoelectron spectroscopy (HAXPES). We prepared ultrathin ferrite films using different oxygen partial pressures, showing pure metallic, light oxidic, and cobalt ferrite-like growth. Additional X-ray diffraction measurements confirm HAXPES results.

17.
Materials (Basel) ; 15(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009192

RESUMO

Here, we present the (element-specific) magnetic properties and cation ordering for ultrathin Co-rich cobalt ferrite films. Two Co-rich CoxFe3-xO4 films with different stoichiometry (x=1.1 and x=1.4) have been formed by reactive solid phase epitaxy due to post-deposition annealing from epitaxial CoO/Fe3O4 bilayers deposited before on Nb-doped SrTiO3(001). The electronic structure, stoichiometry and homogeneity of the cation distribution of the resulting cobalt ferrite films were verified by angle-resolved hard X-ray photoelectron spectroscopy. From X-ray magnetic circular dichroism measurements, the occupancies of the different sublattices were determined using charge-transfer multiplet calculations. For both ferrite films, a partially inverse spinel structure is found with increased amount of Co3+ cations in the low-spin state on octahedral sites for the Co1.4Fe1.6O4 film. These findings concur with the results obtained by superconducting quantum interference device measurements. Further, the latter measurements revealed the presence of an additional soft magnetic phase probably due to cobalt ferrite islands emerging from the surface, as suggested by atomic force microscope measurements.

18.
Nat Commun ; 11(1): 4801, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968079

RESUMO

Exsolution of metal nanoparticles from perovskite-type oxides is a very promising approach to obtain catalysts with superior properties. One particularly interesting property of exsolution catalysts is the possibility of electrochemical switching between different activity states. In this work, synchrotron-based in-situ X-ray diffraction experiments on electrochemically polarized La0.6Sr0.4FeO3-δ thin film electrodes are performed, in order to simultaneously obtain insights into the phase composition and the catalytic activity of the electrode surface. This shows that reversible electrochemical switching between a high and low activity state is accompanied by a phase change of exsolved particles between metallic α--Fe and Fe-oxides. Reintegration of iron into the perovskite lattice is thus not required for obtaining a switchable catalyst, making this process especially interesting for intermediate temperature applications. These measurements also reveal how metallic particles on La0.6Sr0.4FeO3-δ electrodes affect the H2 oxidation and H2O splitting mechanism and why the particle size plays a minor role.

19.
Langmuir ; 36(40): 12077-12086, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32960065

RESUMO

The mechanism behind the stability of organic nanoparticles prepared by liquid antisolvent (LAS) precipitation without a specific stabilizing agent is poorly understood. In this work, we propose that the organic solvent used in the LAS process rapidly forms a molecular stabilizing layer at the interface of the nanoparticles with the aqueous dispersion medium. To confirm this hypothesis, n-octadecyltrichlorosilane (OTS)-functionalized silicon wafers in contact with water-solvent mixtures were used as a flat model system mimicking the solid-liquid interface of the organic nanoparticles. We studied the equilibrium structure of the interface by X-ray reflectometry (XRR) for water-solvent mixtures (methanol, ethanol, 1-propanol, 2-propanol, acetone, and tetrahydrofuran). The formation of an organic solvent-rich layer at the solid-liquid interface was observed. The layer thickness increases with the organic solvent concentration and correlates with the polar and hydrogen bond fraction of Hansen solubility parameters. We developed a self-consistent adsorption model via complementing adsorption isotherms obtained from XRR data with molecular dynamics simulations.

20.
Langmuir ; 36(37): 10905-10915, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32905700

RESUMO

Detailed in operando studies of electrochemically induced PbBrF deposition at the liquid mercury/liquid electrolyte interface are presented. The nucleation and growth were monitored using time-resolved X-ray diffraction and reflectivity combined with electrochemical measurements, revealing a complex potential-dependent behavior. PbBrF deposition commences at potentials above -0.7 V with the rapid formation of an ultrathin adlayer of one unit cell thickness, on top of which (001)-oriented three-dimensional crystallites are formed. Two potential regimes are identified. At low overpotentials, slow growth of a low surface density film of large crystals is observed. At high overpotentials, crossover to a potential-independent morphology occurs, consisting of a compact PbBrF deposit with a saturation thickness of 25 nm, which forms within a few minutes. This potential behavior can be rationalized by the increasing supersaturation near the interface, caused by the potential-dependent Pb2+ deamalgamation, which changes from a slow reaction-controlled process to a fast transport-controlled process in this range of overpotentials. In addition, growth on the liquid substrate is found to involve complex micromechanical effects, such as crystal reorientation and film breakup during dissolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...