Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Helicobacter ; 27(3): e12891, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384141

RESUMO

For decades, traditional in vitro and in vivo models used for the study of Helicobacter pylori infection have relied heavily on the use of gastric cancer cell lines and rodents. Major challenges faced by these methods have been the inability to study cancer initiation in already cancerous cell lines, and the difficulty in translating results obtained in animal models due to genetic differences. These challenges have prevented a thorough understanding of the pathogenesis of disease and slowed the development of cancer therapies and a suitable vaccine against the pathogen. In recent years, the development of gastric organoids has provided great advantages over the traditional in vivo and in vitro models due to their similarities to the human stomach in vivo, their ease of use, and the capacity for long-term culture. This review discusses the advantages and limitations of existing in vivo and in vitro models of H. pylori infection, and how gastric organoids have been applied to study H. pylori pathogenesis, with a focus on how the pathogen interacts with the gastric epithelium, inflammatory processes, epithelial repair, and cancer initiation. The potential applications of organoids to address more complex questions on the role of hormones, vaccine-induced immunity are also discussed.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/metabolismo , Humanos , Inflamação , Organoides , Estômago/patologia , Neoplasias Gástricas/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269931

RESUMO

Gastric cancer represents a significant disease burden worldwide. The factors that initiate cancer are not well understood. Chronic inflammation such as that triggered by H. pylori infection is the most significant cause of gastric cancer. In recent years, organoid cultures developed from human and animal adult stem cells have facilitated great advances in our understanding of gastric homeostasis. Organoid models are now being exploited to investigate the role of host genetics and bacterial factors on proliferation and DNA damage in gastric stem cells. The impact of a chronic inflammatory state on gastric stem cells and the stroma has been less well addressed. This review discusses what we have learned from the use of organoid models to investigate cancer initiation, and highlights questions on the contribution of the microbiota, chronic inflammatory milieu, and stromal cells that can now be addressed by more complex coculture models.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Homeostase , Inflamação/complicações , Organoides , Neoplasias Gástricas/genética
3.
Front Pharmacol ; 9: 865, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127744

RESUMO

Introduction: The pannexin-1 (Panx1) channels are found in many cell types, and ATP released from these channels can act on nearby cells activating purinergic P2X7 receptors (P2X7R) which lead to inflammation. Although Panx1 and P2X7R are implicated in the process of inflammation and cell death, few studies have looked at the role they play in inflammatory bowel disease in human. Hence, the aim of the present study was to investigate the function of Panx1 and P2X7R in an ex vivo colitis model developed from human colonic mucosal explants. Materials and Methods: Healthy human colonic mucosal strips (4 × 10 mm) were incubated in carbogenated culture medium at 37°C for 16 h. Proinflammatory cytokines TNFα and IL-1ß (each 10 ng/mL) were used to induce colitis in mucosal strips, and the effects of Panx1 and P2X7R on cytokines-induced tissue damage were determined in the presence of the Panx1 channel blocker 10Panx1 (100 µM) and P2X7R antagonist A438079 (100 µM). The effects of 10Panx1 and A438079 on cytokines-enhanced epithelial permeability were also studied using Caco-2 cells. Results: Histological staining showed that the mucosal strips had severe structural damage in the cytokines-only group but not in the incubation-control group (P < 0.01). Compared to the cytokines-only group, crypt damage was significantly decreased in groups receiving cytokines with inhibitors (10Panx1, A438079, or 10Panx1 + A438079, P < 0.05). The immunoreactive signals of tight junction protein zonula occludens-1 (ZO-1) were abundant in all control tissues but were significantly disrupted and lost in the cytokines-only group (P < 0.01). The diminished ZO-1 immunoreactivity induced by cytokines was prevented in the presence of 10Panx1 (P = 0.04). Likewise, 10Panx1 significantly attenuated the cytokines-evoked increase in paracellular permeability of Caco-2 cells. Although the inhibition of P2X7R activity by A438079 diminished cytokines-induced crypt damage, its effect on the maintenance of ZO-1 immunoreactivity and Caco-2 epithelial cell integrity was less evident. Conclusion: The blockade of Panx1 and P2X7R reduced the inflammatory cytokines-induced crypt damage, loss of tight junctions and increase in cell permeability. Thus, Panx1 and P2X7R may have roles in causing mucosal damage, a common clinical feature of inflammatory bowel disease.

4.
Otolaryngol Head Neck Surg ; 158(2): 323-330, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29231090

RESUMO

Objectives Dysphagia is common in total laryngectomees, with some symptoms suggesting esophageal dysmotility. Tracheoesophageal (TE) phonation requires effective esophagopharyngeal air passage. Hence, esophageal dysmotility may affect deglutition or TE phonation. This study aimed to determine (1) the characteristics of esophageal dysmotility in laryngectomees, (2) whether clinical history is sensitive in detecting esophageal dysmotility, and (3) the relationship between esophageal dysmotility and TE prosthesis dysfunction. Study Design Multidisciplinary cross-sectional study. Setting Tertiary academic hospital. Subjects and Methods For 31 participants undergone total laryngectomy 1 to 12 years prior, clinical histories were taken by a gastroenterologist and a speech pathologist experienced in managing dysphagia. Esophageal high-resolution manometry was performed and analyzed using Chicago Classification v3.0. Results Interpretable manometric studies were obtained in 23 (1 normal manometry). Esophageal dysmotility patterns included achalasia, esophagogastric junction outflow obstruction, diffuse esophageal spasm, and other major (30%) and minor (50%) peristaltic disorders. The sensitivity of predicting any esophageal dysmotility was 28%, but it is noteworthy that patients with achalasia and diffuse esophageal spasm (DES) were predicted. Two of 4 participants with TE puncture leakage had poor esophageal clearance. Of 20 TE speakers, 12 had voice problems, no correlation between poor voice, and any dysmotility pattern. Conclusions Peristaltic and lower esophageal sphincter dysfunction are common in laryngectomees. Clinical history, while not predictive of minor motor abnormalities, predicted correctly cases with treatable spastic motor disorders. Dysmotility was not associated with poor phonation, although TE puncture leakage might be linked to poor esophageal clearance. Esophageal dysmotility should be considered in the laryngectomees with persisting dysphagia or leaking TE puncture.


Assuntos
Transtornos da Motilidade Esofágica/epidemiologia , Transtornos da Motilidade Esofágica/fisiopatologia , Laringectomia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Fluoroscopia , Humanos , Masculino , Manometria/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Próteses e Implantes
5.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G165-G170, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082285

RESUMO

Altered gastrointestinal (GI) function contributes to the debilitating symptoms of inflammatory bowel diseases (IBD). Nerve circuits contained within the gut wall and outside of the gut play important roles in modulating motility, mucosal fluid transport, and blood flow. The structure and function of these neuronal populations change during IBD. Superimposed on this plasticity is a diminished responsiveness of effector cells - smooth muscle cells, enterocytes, and vascular endothelial cells - to neurotransmitters. The net result is a breakdown in the precisely orchestrated coordination of motility, fluid secretion, and GI blood flow required for health. In this review, we consider how inflammation-induced changes to the effector innervation of these tissues, and changes to the tissues themselves, contribute to defective GI function in models of IBD. We also explore the evidence that reversing neuronal plasticity is sufficient to normalize function during IBD.


Assuntos
Sistema Nervoso Entérico/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Intestinos/fisiopatologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Neurônios/fisiologia
6.
Front Neurosci ; 10: 311, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445679

RESUMO

Purinergic receptors play an important role in inflammation, and can be activated by ATP released via pannexin channels and/or connexin hemichannels. The purinergic P2X7 receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP release and how it affects P2X7R function during inflammation. Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation within the gastrointestinal system. At present, the pathophysiology of this disease remains largely unknown but it may involve the interplay between P2X7R, Panx1, and Cx43. There are two main types of IBD, ulcerative colitis and Crohn's disease, that are classified by their location and frequency of inflammation. Current research suggests that alterations to normal functioning of innate and adaptive immunity may be a factor in disease progression. The involvement of purinergic receptors, connexins, and pannexins in IBD is a relatively novel notion in the context of gastrointestinal inflammation, and has been explored by various research groups. Thus, the present review focuses on the current research involving connexins, pannexins, and purinergic receptors within the gut and enteric nervous system, and will examine their involvement in inflammation and the pathophysiology of IBD.

7.
Adv Exp Med Biol ; 891: 201-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379647

RESUMO

Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption.The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors. Nonetheless, traditional research methods like intracellular electrophysiological approaches have provided the basis for our understanding of the ENS circuitry. In particular, animal models of intestinal inflammation have shown us that we can document changes to neuronal excitability and synaptic transmission.Recent studies examining diet-induced changes to ENS programming have opted to use fast imaging techniques to reveal changes in neuron function. Advances in imaging techniques using voltage- or calcium-sensitive dyes to record neuronal activity promise to overcome many limitations inherent to electrophysiological approaches. Imaging techniques allow access to a wide range of ENS phenotypes and to the changes they undergo during dietary challenges. These sorts of studies have shown that dietary variation or obesity can change how the ENS processes information-in effect reprogramming the ENS. In this review, the data gathered from intracellular recordings will be compared with measurements made using imaging techniques in an effort to determine if the lessons learnt from inflammatory changes are relevant to the understanding of diet-induced reprogramming.


Assuntos
Dieta , Sistema Nervoso Entérico/fisiologia , Trato Gastrointestinal/inervação , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais
8.
Vascul Pharmacol ; 83: 66-77, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27073026

RESUMO

This study investigated the expression and function of transient receptor potential vanilloid type-3 ion channels (TRPV3) in uterine radial arteries isolated from non-pregnant and twenty-day pregnant rats. Immunohistochemistry (IHC) suggested TRPV3 is primarily localized to the smooth muscle in arteries from both non-pregnant and pregnant rats. IHC using C' targeted antibody, and qPCR of TRPV3 mRNA, suggested pregnancy increased arterial TRPV3 expression. The TRPV3 activator carvacrol caused endothelium-independent dilation of phenylephrine-constricted radial arteries, with no difference between vessels from non-pregnant and pregnant animals. Carvacrol-induced dilation was reduced by the TRPV3-blockers isopentenyl pyrophosphate and ruthenium red, but not by the TRPA1 or TRPV4 inhibitors HC-030031 or HC-067047, respectively. In radial arteries from non-pregnant rats only, inhibition of NOS and sGC, or PKG, enhanced carvacrol-mediated vasodilation. Carvacrol-induced dilation of arteries from both non-pregnant and pregnant rats was prevented by the IKCa blocker TRAM-34. TRPV3 caused an endothelium-independent, IKCa-mediated dilation of the uterine radial artery. NO-PKG-mediated modulation of TRPV3 activity is lost in pregnancy, but this did not alter the response to carvacrol.


Assuntos
Canais de Cátion TRPV/metabolismo , Artéria Uterina/metabolismo , Vasodilatação , Animais , Pressão Sanguínea , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Cimenos , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Monoterpenos/farmacologia , Óxido Nítrico/metabolismo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Regulação para Cima , Artéria Uterina/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
9.
Nutrients ; 8(1)2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26805875

RESUMO

The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis.


Assuntos
Afeto/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Trato Gastrointestinal/fisiologia , Serotonina/metabolismo , Triptofano/metabolismo , Encéfalo/microbiologia , Doenças do Sistema Nervoso Central/microbiologia , Doenças do Sistema Nervoso Central/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Humanos
10.
Int J Dev Neurosci ; 46: 67-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26287659

RESUMO

OBJECTIVES: Maternal obesity imposes significant health risks in the offspring including diabetes and dyslipidemia. We previously showed that the hypoglycaemic agent exendin-4 (Ex-4) administered from weaning can reverse the maternal impact of 'transmitted disorders' in such offspring. However daily injection for six-weeks was required and the beneficial effect may lapse upon drug withdrawal. This study aimed to investigate whether short term Ex-4 treatment during suckling period in a rodent model can reverse transmitted metabolic disorders due to maternal obesity. METHODS: Maternal obesity was induced in female Sprague Dawley rats by high-fat diet feeding for 6 weeks, throughout gestation and lactation. Female offspring were treated with Ex-4 (5µg/kg/day) between postnatal day (P) 4 and 14. Female offspring were harvested at weaning (P20). Lipid and glucose metabolic markers were measured in the liver and fat. Appetite regulators were measured in the plasma and hypothalamus. RESULTS: Maternal obesity significantly increased body weight, fat mass, and liver weight in the offspring. There was an associated inhibition of peroxisomal proliferator activated receptor gamma coactivator 1α (PGC1α), increased fatty acid synthase (FASN) expression in the liver, and reduced adipocyte triglyceride lipase (ATGL) expression. It also increased the plasma gut hormone ghrelin and reduced glucagon-like peptide-1. Ex-4 treatment partially reversed the maternal impact on adiposity and impaired lipid metabolism in the offspring, with increased liver PGC1α and inhibition of FASN mRNA expression. Ex-4 treatment also increased the expression of a novel fat depletion gene a2-zinc-glycoprotein 1 in the fat tissue. CONCLUSION: Short term Ex-4 treatment during the suckling period significantly improved the metabolic profile in the offspring from the obese mothers at weaning. Long-term studies are needed to follow such offspring to adulthood to examine the sustained effects of Ex-4 in preventing the development of metabolic disease.


Assuntos
Biomarcadores/metabolismo , Hipoglicemiantes/uso terapêutico , Fenômenos Fisiológicos da Nutrição Materna , Doenças Metabólicas/tratamento farmacológico , Peptídeos/uso terapêutico , Complicações na Gravidez/fisiopatologia , Peçonhas/uso terapêutico , Fatores Etários , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Exenatida , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Leptina/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Doenças Metabólicas/etiologia , Obesidade/etiologia , Obesidade/fisiopatologia , Gravidez , Ratos , Ratos Sprague-Dawley
11.
Curr Pharm Des ; 20(30): 4802-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24251673

RESUMO

The role of melatonin in the gastrointestinal (GI) tract had previously been limited to its well-described anti-oxidant properties. Recent studies have, however, expanded the role of melatonin in the intestine, showing that it acts as a hormone with local paracrine actions to modulate GI function and the release of other hormones. The GI epithelium produces melatonin from the active precursor serotonin, which is thought to come from the serotonin synthesising enterochromaffin cells (EC). The receptors for melatonin, the membrane bound melatonin receptors 1 and 2, are present on some smooth muscles, neurons, and epithelium. Endogenous release of melatonin has been linked with secretory reflexes and the ileal brake reflex, while exogenous application of melatonin in pharmacological doses has been associated with reduced inflammation in a variety of animal models. Recent studies have begun to look at melatonin release from the GI epithelium using real-time electrochemical detection methods. Using these techniques, the time course of melatonin production shows similarities to that of 5-HT release while the ratio of 5-HT to melatonin is altered during aging. In addition, the effects of melatonin supplementation on the production of endogenous melatonin and its precursor serotonin are suppressed. In summary, the role of melatonin in the GI tract is coming of age. There are many studies showing a clear role for endogenously produced melatonin and clear effects of melatonin supplementation. Newly developed electrochemical techniques for exploring melatonin availability in real-time promise to accelerate our understanding of GI melatonin in the years to come.


Assuntos
Técnicas Eletroquímicas , Mucosa Intestinal/metabolismo , Melatonina/biossíntese , Antioxidantes/metabolismo , Humanos , Melatonina/fisiologia
12.
J Anat ; 223(6): 677-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24128141

RESUMO

In pregnancy, the vasculature of the uterus undergoes rapid remodelling to increase blood flow and maintain perfusion to the fetus. The present study determines the distribution and density of caveolae, transient receptor potential vanilloid type 4 channels (TRPV4) and myoendothelial gap junctions, and the relative contribution of related endothelium-dependent vasodilator components in uterine radial arteries of control virgin non-pregnant and 20-day late-pregnant rats. The hypothesis examined is that specific components of endothelium-dependent vasodilator mechanisms are altered in pregnancy-related uterine radial artery remodelling. Conventional and serial section electron microscopy were used to determine the morphological characteristics of uterine radial arteries from control and pregnant rats. TRPV4 distribution and expression was examined using conventional confocal immunohistochemistry, and the contribution of endothelial TRPV4, nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-type activity determined using pressure myography with pharmacological intervention. Data show outward hypertrophic remodelling occurs in uterine radial arteries in pregnancy. Further, caveolae density in radial artery endothelium and smooth muscle from pregnant rats was significantly increased by ~94% and ~31%, respectively, compared with control, whereas caveolae density did not differ in endothelium compared with smooth muscle from control. Caveolae density was significantly higher by ~59% on the abluminal compared with the luminal surface of the endothelium in uterine radial artery of pregnant rats but did not differ at those surfaces in control. TRPV4 was present in endothelium and smooth muscle, but not associated with internal elastic lamina hole sites in radial arteries. TRPV4 fluorescence intensity was significantly increased in the endothelium and smooth muscle of radial artery of pregnant compared with control rats by ~2.6- and 5.5-fold, respectively. The TRPV4 signal was significantly higher in the endothelium compared with the smooth muscle in radial artery of both control and pregnant rats, by ~5.7- and 2.7-fold, respectively. Myoendothelial gap junction density was significantly decreased by ~37% in radial artery from pregnant compared with control rats. Pressure myography with pharmacological intervention showed that NO contributes ~80% and ~30%, and the EDH-type component ~20% and ~70% of the total endothelium-dependent vasodilator response in radial arteries of control and pregnant rats, respectively. TRPV4 plays a functional role in radial arteries, with a greater contribution in those from pregnant rats. The correlative association of increased TRPV4 and caveolae density and role of EDH-type activity in uterine radial artery of pregnant rats is suggestive of their causal relationship. The decreased myoendothelial gap junction density and lack of TRPV4 density at such sites is consistent with their having an integral, albeit complex, interactive role in uterine vascular signalling and remodelling in pregnancy.


Assuntos
Cavéolas/ultraestrutura , Junções Comunicantes/ultraestrutura , Artéria Radial/ultraestrutura , Canais de Cátion TRPV/fisiologia , Artéria Uterina/ultraestrutura , Útero/anatomia & histologia , Animais , Endotélio Vascular/ultraestrutura , Feminino , Imuno-Histoquímica , Microscopia Eletrônica , Gravidez , Ratos , Ratos Sprague-Dawley , Vasodilatação/fisiologia
14.
Am J Physiol Regul Integr Comp Physiol ; 305(8): R917-26, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23948776

RESUMO

In pregnancy, α-adrenoceptor-mediated vasoconstriction is augmented in uterine radial arteries and is accompanied by underlying changes in smooth muscle (SM) Ca(2+) activity. This study aims to determine the Ca(2+) entry channels associated with altered vasoconstriction in pregnancy, with the hypothesis that augmented vasoconstriction involves transient receptor potential canonical type-3 (TRPC3) and L- and T-type voltage-dependent Ca(2+) channels. Immunohistochemistry showed TRPC3, L-type Cav1.2 (as the α1C subunit), T-type Cav3.1 (α1G), and Cav3.2 (α1H) localization to the uterine radial artery SM. Fluorescence intensity of TRPC3, Cav1.2, and Cav3.2 was increased, and Cav3.1 decreased in radial artery SM from pregnant rats. Western blot analysis confirmed increased TRPC3 protein expression in the radial artery from pregnant rats. Pressure myography incorporating pharmacological intervention to examine the role of these channels in uterine radial arteries showed an attenuation of phenylephrine (PE)-induced constriction with Pyr3 {1-[4-[(2,3,3-trichloro-1-oxo-2-propen-1-yl)amino]phenyl]-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid}-mediated TRPC3 inhibition or with nifedipine-mediated L-type channel block alone in vessels from pregnant rats; both effects of which were diminished in radial arteries from nonpregnant rats. Combined TRPC3 and L-type inhibition attenuated PE-induced constriction in radial arteries, and the residual vasoconstriction was reduced and abolished with T-type channel block with NNC 55-0396 in arteries from nonpregnant and pregnant rats, respectively. With SM Ca(2+) stores depleted and in the presence of PE, nifedipine, and NNC 55-0396, blockade of TRPC3 reversed PE-induced constriction. These data suggest that TRPC3 channels act synergistically with L- and T-type channels to modulate radial artery vasoconstriction, with the mechanism being augmented in pregnancy.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Contração Muscular/fisiologia , Canais de Cátion TRPC/metabolismo , Artéria Uterina/metabolismo , Vasoconstrição/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miografia , Nifedipino/farmacologia , Fenilefrina/farmacologia , Gravidez , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Artéria Uterina/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
15.
Histochem Cell Biol ; 139(2): 309-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23007290

RESUMO

Diet-induced obesity induces changes in mechanisms that are essential for the regulation of normal artery function, and in particular the function of the vascular endothelium. Using a rodent model that reflects the characteristics of human dietary obesity, in the rat saphenous artery we have previously demonstrated that endothelium-dependent vasodilation shifts from an entirely nitric oxide (NO)-mediated mechanism to one involving upregulation of myoendothelial gap junctions and intermediate conductance calcium-activated potassium channel activity and expression. This study investigates the changes in NO-mediated mechanisms that accompany this shift. In saphenous arteries from controls fed a normal chow diet, acetylcholine-mediated endothelium-dependent vasodilation was blocked by NO synthase and soluble guanylyl cyclase inhibitors, but in equivalent arteries from obese animals sensitivity to these agents was reduced. The expression of endothelial NO synthase (eNOS) and caveolin-3 in rat saphenous arteries was unaffected by obesity, whilst that of caveolin-1 monomer and large oligomeric complexes of caveolins-1 and -2 were increased in membrane-enriched samples. The density of caveolae was increased at the membrane and cytoplasm of endothelial and smooth muscle cells of saphenous arteries from obese rats. Dissociation of eNOS from caveolin-1, as a prerequisite for activation of the enzyme, may be compromised and thereby impair NO-mediated vasodilation in the saphenous artery from diet-induced obese rats. Such altered signaling mechanisms in obesity-related vascular disease represent significant potential targets for therapeutic intervention.


Assuntos
Cavéolas/metabolismo , Caveolina 1/biossíntese , Dieta Hiperlipídica/efeitos adversos , Óxido Nítrico/metabolismo , Obesidade/metabolismo , Vasodilatação , Animais , Caveolina 1/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
16.
Front Pharmacol ; 3: 147, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848202

RESUMO

Cigarette smoking is an addictive behavior, and is the primary cause of cardiovascular and pulmonary disease, and cancer (among other diseases). Cigarette smoke contains thousands of components that may affect caloric intake and energy expenditure, although nicotine is the major addictive substance present, and has the best described actions. Nicotine exposure from cigarette smoke can change brain feeding regulation to reduce appetite via both energy homeostatic and reward mechanisms, causing a negative energy state which is characterized by reduced energy intake and increased energy expenditure that are linked to low body weight. These findings have led to the public perception that smoking is associated with weight loss. However, its effects at reducing abdominal fat mass (a predisposing factor for glucose intolerance and insulin resistance) are marginal, and its promotion of lean body mass loss in animal studies suggests a limited potential for treatment in obesity. Smoking during pregnancy puts pressure on the mother's metabolic system and is a significant contributor to adverse pregnancy outcomes. Smoking is a predictor of future risk for respiratory dysfunction, social behavioral problems, cardiovascular disease, obesity, and type-2 diabetes. Catch-up growth is normally observed in children exposed to intrauterine smoke, which has been linked to subsequent childhood obesity. Nicotine can have a profound impact on the developing fetal brain, via its ability to rapidly and fully pass the placenta. In animal studies this has been linked with abnormal hypothalamic gene expression of appetite regulators such as downregulation of NPY and POMC in the arcuate nucleus of the hypothalamus. Maternal smoking or nicotine replacement leads to unhealthy eating habits (such as junk food addiction) and other behavioral disorders in the offspring.

17.
J Neurosci ; 32(33): 11414-23, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895723

RESUMO

Canonical transient receptor potential (TRPC3) nonselective cation channels are effectors of G-protein-coupled receptors (GPCRs), activated via phospholipase C-diacylglycerol signaling. In cerebellar Purkinje cells, TRPC3 channels cause the metabotropic glutamate receptor (mGluR)-mediated slow EPSC (sEPSC). TRPC3 channels also provide negative feedback regulation of cytosolic Ca(2+), mediated by a C terminus "calmodulin and inositol trisphosphate receptor binding" (CIRB) domain. Here we report the alternative splicing of the TRPC3 mRNA transcript (designated TRPC3c), resulting in omission of exon 9 (approximately half of the CIRB domain) in mice, rats, and guinea pigs. TRPC3c expression is brain region specific, with prevalence in the cerebellum and brainstem. The TRPC3c channels expressed in HEK293 cells exhibit increased basal and GPCR-activated channel currents, and increased Ca(2+) fluorescence responses, compared with the previously characterized (TRPC3b) isoform when activated via either the endogenous M3 muscarinic acetylcholine receptor, or via coexpressed mGluR1. GPCR-induced TRPC3c channel opening rate (cell-attached patch) matched the maximum activation achieved with inside-out patches with zero cytosolic Ca(2+), whereas the GPCR-induced TRPC3b activation frequency was significantly less. Both TRPC3 channel isoforms were blocked with 2 mm Ca(2+), attributable to CIRB domain regulation. In addition, genistein blocked Purkinje cell (S)-2-amino-2-(3,5-dihydroxyphenyl) acetic acid (mGluR1)-activated TPRC3 current as for recombinant TRPC3c current. This novel TRPC3c ion channel therefore has enhanced efficacy as a neuronal GPCR-Ca(2+) signaling effector, and is associated with sensorimotor coordination, neuronal development, and brain injury.


Assuntos
Processamento Alternativo/genética , Calmodulina/metabolismo , Cerebelo/citologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neurônios/fisiologia , Canais de Cátion TRPC/metabolismo , Sequência de Aminoácidos , Análise de Variância , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Cálcio/metabolismo , Calmodulina/genética , Carbacol/farmacologia , Linhagem Celular Transformada , Agonistas Colinérgicos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Genisteína/farmacologia , Cobaias , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos , Canais de Cátion TRPC/genética , Transfecção
18.
Cardiovasc Res ; 95(4): 439-47, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22721989

RESUMO

AIMS: Microdomain signalling mechanisms underlie key aspects of artery function and the modulation of intracellular calcium, with transient receptor potential (TRP) channels playing an integral role. This study determines the distribution and role of TRP canonical type 3 (C3) channels in the control of endothelium-derived hyperpolarization (EDH)-mediated vasodilator tone in rat mesenteric artery. METHODS AND RESULTS: TRPC3 antibody specificity was verified using rat tissue, human embryonic kidney (HEK)-293 cells stably transfected with mouse TRPC3 cDNA, and TRPC3 knock-out (KO) mouse tissue using western blotting and confocal and ultrastructural immunohistochemistry. TRPC3-Pyr3 (ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate) specificity was verified using patch clamp of mouse mesenteric artery endothelial and TRPC3-transfected HEK cells, and TRPC3 KO and wild-type mouse aortic endothelial cell calcium imaging and mesenteric artery pressure myography. TRPC3 distribution, expression, and role in EDH-mediated function were examined in rat mesenteric artery using immunohistochemistry and western blotting, and pressure myography and endothelial cell membrane potential recordings. In rat mesenteric artery, TRPC3 was diffusely distributed in the endothelium, with approximately five-fold higher expression at potential myoendothelial microdomain contact sites, and immunoelectron microscopy confirmed TRPC3 at these sites. Western blotting and endothelial damage confirmed primary endothelial TRPC3 expression. In rat mesenteric artery endothelial cells, Pyr3 inhibited hyperpolarization generation, and with individual SK(Ca) (apamin) or IK(Ca) (TRAM-34) block, Pyr3 abolished the residual respective IK(Ca)- and SK(Ca)-dependent EDH-mediated vasodilation. CONCLUSION: The spatial localization of TRPC3 and associated channels, receptors, and calcium stores are integral for myoendothelial microdomain function. TRPC3 facilitates endothelial SK(Ca) and IK(Ca) activation, as key components of EDH-mediated vasodilator activity and for regulating mesenteric artery tone.


Assuntos
Fatores Biológicos/metabolismo , Endotélio Vascular/metabolismo , Artérias Mesentéricas/metabolismo , Canais de Cátion TRPC/metabolismo , Vasodilatação , Animais , Pressão Arterial , Western Blotting , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/ultraestrutura , Células HEK293 , Humanos , Imuno-Histoquímica , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Masculino , Potenciais da Membrana , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/ultraestrutura , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Imunoeletrônica , Miografia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Cátion TRPC/efeitos dos fármacos , Canais de Cátion TRPC/genética , Transfecção , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
20.
Microcirculation ; 19(5): 403-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22074364

RESUMO

In several species and in many vascular beds, ultrastructural studies describe close contact sites between the endothelium and smooth muscle of <∼20nm. Such sites are thought to facilitate the local action of signaling molecules and/or the passage of current, as metabolic and electrical coupling conduits between the arterial endothelium and smooth muscle. These sites have the potential for bidirectional communication between the endothelium and smooth muscle, as a key pathway for coordinating vascular function. The aim of this brief review is to summarize the literature on the ultrastructural anatomy and distribution of key components of MECC sites in arteries. In addition to their traditional role of facilitating electrical coupling between the two cell layers, data on the role of MECC sites in arteries, as signaling microdomains involving a spatial localization of channels, receptors and calcium stores are highlighted. Diversity in the density and specific characteristics of MECC sites as signaling microdomains suggests considerable potential for functional diversity within and between arteries in health and disease.


Assuntos
Artérias , Endotélio Vascular , Junções Comunicantes/metabolismo , Microdomínios da Membrana/fisiologia , Músculo Liso Vascular , Animais , Artérias/anatomia & histologia , Artérias/fisiologia , Endotélio Vascular/anatomia & histologia , Endotélio Vascular/fisiologia , Humanos , Músculo Liso Vascular/anatomia & histologia , Músculo Liso Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...