Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(17): e2203115, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36807830

RESUMO

Tissue damage due to cancer, congenital anomalies, and injuries needs new efficient treatments that allow tissue regeneration. In this context, tissue engineering shows a great potential to restore the native architecture and function of damaged tissues, by combining cells with specific scaffolds. Scaffolds made of natural and/or synthetic polymers and sometimes ceramics play a key role in guiding cell growth and formation of the new tissues. Monolayered scaffolds, which consist of uniform material structure, are reported as not being sufficient to mimic complex biological environment of the tissues. Osteochondral, cutaneous, vascular, and many other tissues all have multilayered structures, therefore multilayered scaffolds seem more advantageous to regenerate these tissues. In this review, recent advances in bilayered scaffolds design applied to regeneration of vascular, bone, cartilage, skin, periodontal, urinary bladder, and tracheal tissues are focused on. After a short introduction on tissue anatomy, composition and fabrication techniques of bilayered scaffolds are explained. Then, experimental results obtained in vitro and in vivo are described, and their limitations are given. Finally, difficulties in scaling up production of bilayer scaffolds and reaching the stage of clinical studies are discussed when multiple scaffold components are used.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Biomimética , Osso e Ossos
2.
Pharmaceutics ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36678702

RESUMO

Second- and third-line treatments of patients with antibiotic-resistant infections can have serious side effects, such as organ failure with prolonged care and recovery. As clinical practices such as cancer therapies, chronic disease treatment, and organ transplantation rely on the ability of available antibiotics to fight infection, the increased resistance of microbial pathogens presents a multifaceted, serious public health concern worldwide. The pipeline of traditional antibiotics is exhausted and unable to overcome the continuously developing multi-drug resistance. To that end, the widely observed limitation of clinically utilized antibiotics has prompted researchers to find a clinically relevant alternate antimicrobial strategy. In recent decades, the discovery of antimicrobial peptides (AMPs) as an excellent candidate to overcome antibiotic resistance has received further attention, particularly from scientists, health professionals, and the pharmaceutical industry. Effective AMPs are characterized by a broad spectrum of antimicrobial activities, high pathogen specificity, and low toxicity. In addition to their antimicrobial activity, AMPs have been found to be involved in a variety of biological functions, including immune regulation, angiogenesis, wound healing, and antitumor activity. This review provides a current overview of the structure, molecular action, and therapeutic potential of AMPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...