Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Med Chem ; 64(14): 9960-9988, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34251197

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive-fibrosing phenotype. IPF has been associated with aberrant HDAC activities confirmed by our immunohistochemistry studies on HDAC6 overexpression in IPF lung tissues. We herein developed a series of novel hHDAC6 inhibitors, having low inhibitory potency over hHDAC1 and hHDAC8, as potential pharmacological tools for IPF treatment. Their inhibitory potency was combined with low in vitro and in vivo toxicity. Structural analysis of 6h and structure-activity relationship studies contributed to the optimization of the binding mode of the new molecules. The best-performing analogues were tested for their efficacy in inhibiting fibrotic sphere formation and cell viability, proving their capability in reverting the IPF phenotype. The efficacy of analogue 6h was also determined in a validated human lung model of TGF-ß1-dependent fibrogenesis. The results highlighted in this manuscript may pave the way for the identification of first-in-class molecules for the treatment of IPF.


Assuntos
Desenho de Fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Relação Dose-Resposta a Droga , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
2.
Molecules ; 25(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992652

RESUMO

Ovarian cancer remains the leading cause of mortality among gynecological tumors. Estrogen receptor beta (ERß) expression has been suggested to act as a tumor suppressor in epithelial ovarian cancer by reducing both tumor growth and metastasis. ERß expression abnormalities represent a critical step in the development and progression of ovarian cancer: for these reasons, its re-expression by genetic engineering, as well as the use of targeted ERß therapies, still constitute an important therapeutic approach. 3-{[2-chloro-1-(4-chlorobenzyl)-5-methoxy-6-methyl-1H-indol-3-yl]methylene}-5-hydroxy-6-methyl-1,3-dihydro-2H-indol-2-one, referred to here as compound 3, has been shown to have cytostatic as well cytotoxic effects on various hormone-dependent cancer cell lines. However, the mechanism of its anti-carcinogenic activity is not well understood. Here, we offer a possible explanation of such an effect in the human ovarian cancer cell line IGROV1. Chromatin binding protein assay and liquid chromatography mass spectrometry were exploited to localize and quantify compound 3 in cells. Molecular docking was used to prove compound 3 binding to ERß. Mass spectrometry-based approaches were used to analyze histone post-translational modifications. Finally, gene expression analyses revealed a set of genes regulated by the ERß/3 complex, namely CCND1, MYC, CDKN2A, and ESR2, providing possible molecular mechanisms that underline the observed antiproliferative effects.


Assuntos
Receptor beta de Estrogênio , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indóis , Simulação de Acoplamento Molecular , Proteínas de Neoplasias , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/química , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Indóis/química , Indóis/farmacologia , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
3.
Biochemistry ; 58(35): 3634-3645, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31389685

RESUMO

SET and MYND domain-containing protein 3 (SMYD3) is a lysine methyltransferase that plays a central role in a variety of cancer diseases, exerting its pro-oncogenic activity by methylation of key proteins, of both nuclear and cytoplasmic nature. However, the role of SMYD3 in the initiation and progression of cancer is not yet fully understood and further biochemical characterization is required to support the discovery of therapeutics targeting this enzyme. We have therefore developed robust protocols for production, handling, and crystallization of SMYD3 and biophysical and biochemical assays for clarification of SMYD3 biochemistry and identification of useful lead compounds. Specifically, a time-resolved biosensor assay was developed for kinetic characterization of SMYD3 interactions. Functional differences in SMYD3 interactions with its natural small molecule ligands SAM and SAH were revealed, with SAM forming a very stable complex. A variety of peptides mimicking putative substrates of SMYD3 were explored in order to expose structural features important for recognition. The interaction between SMYD3 and some peptides was influenced by SAM. A nonradioactive SMYD3 activity assay using liquid chromatography-mass spectrometry (LC-MS) analysis explored substrate features of importance also for methylation. Methylation was notable only toward MAP kinase kinase kinase 2 (MAP3K2_K260)-mimicking peptides, although binary and tertiary complexes were detected also with other peptides. The analysis supported a random bi-bi mechanistic model for SMYD3 methyltransferase catalysis. Our work unveiled complexities in SMYD3 biochemistry and resulted in procedures suitable for further studies and identification of novel starting points for design of effective and specific leads for this potential oncology target.


Assuntos
Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Estabilidade Enzimática , Epigênese Genética/genética , Escherichia coli , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/isolamento & purificação , Humanos , Cinética , Ligantes , Conformação Proteica , Desdobramento de Proteína , Relação Estrutura-Atividade , Temperatura , Termodinâmica
4.
J Pharm Biomed Anal ; 162: 171-178, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30248608

RESUMO

The ADMET profile of drugs is strongly affected by human serum albumin (HSA), due to its leading role as carrier of poorly soluble compounds in plasma; a critical assessment of the binding capacity of HSA and the evaluation of binding competition between drugs are therefore pivotal for a reliable pharmacokinetic and pharmacodynamic characterization. In clinical practice, a potential source of impairment in the binding properties of HSA is the use of octanoate and N-acetyltryptophan as stabilizers during the production of pharmaceutical-grade HSA for infusion (i-HSA), which is currently administered in the treatment of a growing range of pathological conditions. The peculiar sensitivity of circular dichroism (CD) spectroscopy towards the stereochemical features of high-affinity binding events is herein exploited to achieve a site-specific assessment of the effect of stabilizers on the binding properties of i-HSA. The binding affinity and capacity of fatty-acid-free HSA towards site-selective induced circular dichroism (ICD) markers for the three high-affinity binding sites of HSA was compared to that of i-HSA submitted to ultrafiltration and dialysis to remove both stabilizers. Results showed a considerable impairment of the binding capacity of i-HSA at site II and a relatively lower influence on the binding properties of site I. Ultrafiltration proved to be ineffective in depleting octanoate, while the proposed dialysis protocol, which involves a pH-induced reversible unfolding of the protein, resulted in a total clearance of both stabilizers, confirmed by the full restoration of the binding properties of HSA at all binding sites. The outcomes of this study proved that CD spectroscopy is a suitable technique to evaluate the binding properties of i-HSA, ensuring an assessment of the availability of the binding sites and the possibility of monitoring the clearance of stabilizers. Eventually, the proposed method for their depletion might constitute a connection bridge between albumin in vitro studies and its clinical applications.


Assuntos
Química Farmacêutica/métodos , Dicroísmo Circular , Albumina Sérica Humana/metabolismo , Sítios de Ligação , Caprilatos/química , Diálise/métodos , Concentração de Íons de Hidrogênio , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Desdobramento de Proteína , Albumina Sérica Humana/química , Relação Estrutura-Atividade , Triptofano/análogos & derivados , Triptofano/química , Ultrafiltração/métodos
6.
Biochim Biophys Acta Gen Subj ; 1861(8): 2132-2145, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28552632

RESUMO

BACKGROUND: In photosynthetic organisms, transketolase (TK) is involved in the Calvin-Benson cycle and participates to the regeneration of ribulose-5-phosphate. Previous studies demonstrated that TK catalysis is strictly dependent on thiamine pyrophosphate (TPP) and divalent ions such as Mg2+. METHODS: TK from the unicellular green alga Chlamydomonas reinhardtii (CrTK) was recombinantly produced and purified to homogeneity. Biochemical properties of the CrTK enzyme were delineated by activity assays and its structural features determined by CD analysis and X-ray crystallography. RESULTS: CrTK is homodimeric and its catalysis depends on the reconstitution of the holo-enzyme in the presence of both TPP and Mg2+. Activity measurements and CD analysis revealed that the formation of fully active holo-CrTK is Mg2+-dependent and proceeds with a slow kinetics. The 3D-structure of CrTK without cofactors (CrTKapo) shows that two portions of the active site are flexible and disordered while they adopt an ordered conformation in the holo-form. Oxidative treatments revealed that Mg2+ participates in the redox control of CrTK by changing its propensity to be inactivated by oxidation. Indeed, the activity of holo-form is unaffected by oxidation whereas CrTK in the apo-form or reconstituted with the sole TPP show a strong sensitivity to oxidative inactivation. CONCLUSION: These evidences indicate that Mg2+ is fundamental to allow gradual conformational arrangements suited for optimal catalysis. Moreover, Mg2+ is involved in the control of redox sensitivity of CrTK. GENERAL SIGNIFICANCE: The importance of Mg2+ in the functionality and redox sensitivity of CrTK is correlated to light-dependent fluctuations of Mg2+ in chloroplasts.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Magnésio/farmacologia , Transcetolase/química , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Oxirredução , Conformação Proteica , Tiamina Pirofosfato/farmacologia
7.
J Org Chem ; 82(1): 202-210, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27991785

RESUMO

Racemates of five chiral resorcin[4]arenes, four tetra-O-substituted and one hepta-O-substituted, have been resolved by enantioselective HPLC, and their ECD spectra have been recorded online by stopped-flow measurements. The absolute configuration has been assigned by comparison of the experimental ECD spectra with DFT and semiempirical calculations. For the four tetra-O-substituted resorcin[4]arenes, the ECD exciton couplet at longer wavelength depends on the chirality induced in the arene scaffold by the substituents rather than on the precise nature of the substituents themselves. Accordingly, the exciton chirality model with excitons localized on the arene scaffold, here generalized to Cn symmetry, accurately describes the relationship between stereochemistry and chiroptical properties for this couplet, while its application at shorter wavelengths is unsafe. For the significantly larger hepta-O-substituted system the assignment particularly benefits from the use of the semiempirical ZINDO method.

8.
Curr Med Chem ; 24(8): 743-757, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27855626

RESUMO

Enantioselective high-performance liquid chromatography (eHPLC) using chiral stationary phases (CSPs) is surely the most used technique for the determination of the enantiomeric excess (e.e.) of chiral drugs, a fundamental parameter for reliable studies on the relationship between stereochemistry and pharmacological activity. A key aspect of this enantioseparation technique is the efficiency of the chiral selector, which can be optimized to obtain higher selectivity and a wider applicability. Thus, the determination of the mechanisms behind chiral recognition is very important to predict and improve the enantioselectivity of CSPs. The present review deals with the preparation and use of CSPs for eHPLC with human serum albumin (HSA) as chiral selector, with particular emphasis on the modulation of the chromatographic performance. HSA-based CSPs allow a relatively easy prediction of the binding sites involved in the retention of analytes and the possibility to improve the selectivity of enantioresolution by modulating the binding process, using either reversible or covalent modifications of the protein. Significant improvements of the chromatographic parameters, such as reduction of analysis time and increase of enantioselectivity, have been obtained for selected analytes by using competitors for a particular binding site of HSA dissolved in the mobile phase or by selectively modifying the protein structure at single amino acid residues.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Albumina Sérica/química , Humanos , Estereoisomerismo
9.
Sci Rep ; 6: 35987, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782157

RESUMO

Decompensated cirrhosis is associated to extensive post-transcriptional changes of human albumin (HA). This study aims to characterize the occurrence of HA homodimerization in a large cohort of patients with decompensated cirrhosis and to evaluate its association with clinical features and prognosis. HA monomeric and dimeric isoforms were identified in peripheral blood by using a HPLC-ESI-MS technique in 123 cirrhotic patients hospitalized for acute decompensation and 50 age- and sex-comparable healthy controls. Clinical and biochemical parameters were recorded and patients followed up to one year. Among the monomeric isoforms identified, the N- and C-terminal truncated and the native HA underwent homodimerization. All three homodimers were significantly more abundant in patients with cirrhosis, acute-on-chronic liver failure and correlate with the prognostic scores. The homodimeric N-terminal truncated isoform was independently associated to disease complications and was able to stratify 1-year survival. As a result of all these changes, the monomeric native HA was significantly decreased in patients with cirrhosis, being also associated with a poorer prognosis. In conclusion homodimerization is a novel described structural alteration of the HA molecule in decompensated cirrhosis and contributes to the progressive reduction of the monomeric native HA, the only isoform provided of structural and functional integrity.


Assuntos
Cirrose Hepática/sangue , Albumina Sérica Humana/química , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Estimativa de Kaplan-Meier , Cirrose Hepática/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Isoformas de Proteínas/sangue , Isoformas de Proteínas/química , Multimerização Proteica , Estrutura Quaternária de Proteína , Índice de Gravidade de Doença , Espectrometria de Massas por Ionização por Electrospray
10.
Anal Bioanal Chem ; 408(28): 7971-7980, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27580605

RESUMO

NikR is a transcription factor that regulates the expression of Ni(II)-dependent enzymes and other proteins involved in nickel trafficking. In the human pathogenic bacterium Helicobacter pylori, NikR (HpNikR) controls, among others, the expression of the Ni(II) enzyme urease by binding the double-strand DNA (dsDNA) operator region of the urease promoter (OP ureA ) in a Ni(II)-dependent mode. This article describes the complementary use of surface plasmon resonance (SPR) spectroscopy and isothermal titration calorimetry (ITC) to carry out a mechanistic characterization of the HpNikR-OP ureA interaction. An active surface was prepared by affinity capture of OP ureA and validated for the recognition process in the SPR experiments. Subsequently, the Ni(II)-dependent affinity of the transcription factor for its operator region was assessed through kinetic evaluation of the binding process at variable Ni(II) concentrations. The kinetic data are consistent with a two-step binding mode involving an initial encounter between the two interactants, followed by a conformational rearrangement of the HpNikR-OP ureA complex, leading to high affinity binding. This conformational change is only observed in the presence of the full set of four Ni(II) ions bound to the protein. The SPR assay developed and validated in this study constitutes a suitable method to screen potential drug lead candidates acting as inhibitors of this protein-dsDNA interaction. Graphical Abstract Pictorial representation of the interaction between HpNikR, flowing in solution, and the OP ureA urease promoter immobilized on the sensor chip surface.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Regiões Operadoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , DNA Bacteriano/genética , Descoberta de Drogas , Modelos Biológicos , Ligação Proteica , Proteínas Repressoras/genética , Ressonância de Plasmônio de Superfície , Titulometria , Urease/genética , Urease/metabolismo
12.
J Pharm Biomed Anal ; 122: 166-72, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26856457

RESUMO

Cucurbitacins are a group of tetracyclic triterpenoids, known for centuries for their anti-cancer and anti-inflammatory properties, which are being actively investigated over the past decades in order to elucidate their mechanism of action. In perspective of being used as therapeutic molecules, a pharmacokinetic characterization is crucial to assess the affinity toward blood carrier proteins and extrapolate distribution volumes. Usually, pharmacokinetic data are first collected on animal models and later translated to humans; therefore, an early characterization of the interaction with carrier proteins from different species is highly desirable. In the present study, the interactions of cucurbitacins E and I with human and rat serum albumins (HSA and RSA) were investigated by means of surface plasmon resonance (SPR)-based optical biosensing and circular dichroism (CD) spectroscopy. Active HSA and RSA sensor chip surfaces were prepared through an amine coupling reaction protocol, and the equilibrium dissociation constants (Kd) for the different cucurbitacins-serum albumins complexes were then determined by SPR analysis. Further information on the binding of cucurbitacins to serum albumins was obtained by CD competition experiments with biliverdin, a specific marker binding to subdomain IB of HSA. SPR data unveiled a previously unreported binding event between CucI and HSA; the determined binding affinities of both compounds were slightly higher for RSA with respect to HSA, even though all the compounds can be ranked as high-affinity binders for both carriers. CD analysis showed that the two cucurbitacins modify the binding of biliverdin to serum albumins through opposite allosteric modulation (positive for HSA, negative for RSA), confirming the need for caution in the translation of pharmacokinetic data across species.


Assuntos
Dicroísmo Circular/métodos , Cucurbitacinas/química , Cucurbitacinas/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Animais , Sítios de Ligação , Humanos , Ligação Proteica , Ratos
13.
J Med Chem ; 59(6): 2612-32, 2016 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-26888301

RESUMO

We report the discovery of compound 4a, a potent ß-lactam-based monoacylglycerol lipase (MGL) inhibitor characterized by an irreversible and stereoselective mechanism of action, high membrane permeability, high brain penetration evaluated using a human in vitro blood-brain barrier model, high selectivity in binding and affinity-based proteomic profiling assays, and low in vitro toxicity. Mode-of-action studies demonstrate that 4a, by blocking MGL, increases 2-arachidonoylglycerol and behaves as a cannabinoid (CB1/CB2) receptor indirect agonist. Administration of 4a in mice suffering from experimental autoimmune encephalitis ameliorates the severity of the clinical symptoms in a CB1/CB2-dependent manner. Moreover, 4a produced analgesic effects in a rodent model of acute inflammatory pain, which was antagonized by CB1 and CB2 receptor antagonists/inverse agonists. 4a also relieves the neuropathic hypersensitivity induced by oxaliplatin. Given these evidence, 4a, as MGL selective inhibitor, could represent a valuable lead for the future development of therapeutic options for multiple sclerosis and chronic pain.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Esclerose Múltipla/tratamento farmacológico , Dor/tratamento farmacológico , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Desenho de Fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Monoacilglicerol Lipases/antagonistas & inibidores , Testes de Mutagenicidade , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Compostos Organoplatínicos , Oxaliplatina , Permeabilidade , Proteômica , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Relação Estrutura-Atividade
14.
J Pharm Biomed Anal ; 122: 141-7, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26852162

RESUMO

Human serum albumin (HSA) is the most abundant plasma protein, endowed with several biological properties unrelated to its oncotic power, such as antioxidant and free-radicals scavenging activities, binding and transport of many endogenous and exogenous substances, and regulation of endothelial function and inflammatory response. These non-oncotic activities are closely connected to the peculiarly dynamic structure of the albumin molecule. HSA undergoes spontaneous structural modifications, mainly by reaction with oxidants and saccharides; however, patients with cirrhosis show extensive post-transcriptional changes at several molecular sites of HSA, the degree of which parallels the severity of the disease. The present work reports the development and application of an innovative LC-MS analytical method for a rapid and reproducible determination of the relative abundance of HSA isoforms in plasma samples from alcoholic hepatitis (AH) patients. A condition of severe oxidative stress, similar to that observed in AH patients, is associated with profound changes in circulating HSA microheterogeneity. More interestingly, the high resolution provided by the analytical platform allowed the monitoring of novel oxidative products of HSA never reported before.


Assuntos
Hepatite Alcoólica/sangue , Espectrometria de Massas/métodos , Plasma/química , Albumina Sérica/química , Adulto , Idoso , Estudos de Casos e Controles , Cromatografia Líquida/métodos , Humanos , Cirrose Hepática/sangue , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo/fisiologia , Isoformas de Proteínas/sangue , Isoformas de Proteínas/química , Reprodutibilidade dos Testes , Adulto Jovem
15.
Chirality ; 27(12): 914-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26448200

RESUMO

Caffeic acid-derived polyethers are a class of natural products isolated from the root extracts of comfrey and bugloss, which are endowed with intriguing pharmacological properties as anticancer agents. The synthesis of new polyether derivatives is achieved through ring-opening polymerization of chiral 2,3-disubstituted oxiranes, whose absolute configurations define the overall stereochemistry of the produced polymer. The absolute stereochemistry of one of these building blocks, methyl trans-3-(3,4-dimethoxy-phenyl)glycidate (3), was therefore characterized by the combination of enantioselective high-performance liquid chromatography (HPLC), electronic circular dichroism (ECD) spectroscopy, and time-dependent density functional theory (TD-DFT) calculations. Initial efforts aiming at the isolation of enantiomers by means of a standard preparative HPLC protocol followed by offline ECD analysis failed due to unexpected degradation of the samples after collection. The stopped-flow HPLC-CD approach, by which the ECD spectra of enantiomers are measured online with the HPLC system, was applied to overcome this issue and allowed a fast, reliable, and chemical-saving analysis, while avoiding the risks of sample degradation during the collection and processing of enantiomeric fractions. Subsequent TD-DFT calculations identified ( as the first eluted enantiomeric fraction on the Lux Cellulose-2 column, therefore achieving a full stereochemical characterization of the chiral oxirane under investigation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Dicroísmo Circular/métodos , Compostos de Epóxi/química , Espectrofotometria Ultravioleta/métodos , Estereoisomerismo
16.
Braz. j. pharm. sci ; 51(2): 393-401, Apr.-June 2015. tab, ilus
Artigo em Inglês | LILACS | ID: lil-755056

RESUMO

Levetiracetam (LEV), an antiepileptic drug (AED) with favorable pharmacokinetic profile, is increasingly being used in clinical practice, although information on its metabolism and disposition are still being generated. Therefore a simple, robust and fast liquid-liquid extraction (LLE) followed by high-performance liquid chromatography method is described that could be used for both pharmacokinetic and therapeutic drug monitoring (TDM) purposes. Moreover, recovery rates of LEV in plasma were compared among LLE, stir bar-sorptive extraction (SBSE), and solid-phase extraction (SPE). Solvent extraction with dichloromethane yielded a plasma residue free from usual interferences such as commonly co-prescribed AEDs, and recoveries around 90% (LLE), 60% (SPE) and 10% (SBSE). Separation was obtained using reverse phase Select B column with ultraviolet detection (235 nm). Mobile phase consisted of methanol:sodium acetate buffer 0.125 M pH 4.4 (20:80, v/v). The method was linear over a range of 2.8-220.0 µg mL-1. The intra- and inter-assay precision and accuracy were studied at three concentrations; relative standard deviation was less than 10%. The limit of quantification was 2.8 µg mL-1. This robust method was successfully applied to analyze plasma samples from patients with epilepsy and therefore might be used for pharmacokinetic and TDM purposes...


Levetiracetam, fármaco antiepiléptico com perfil farmacocinético favorável, tem sido cada vez mais utilizado na prática clínica, embora informações sobre seu metabolismo e disposição cinética ainda estejam sendo geradas. Um método simples, robusto e rápido de extração líquido-líquido seguido por análise por cromatografia líquida de alta eficiência é aqui descrito para servir tanto a investigações farmacocinéticas quanto à monitorização terapêutica. Além disso, as taxas de recuperação do levetiracetam em plasma foram comparadas entre a extração líquido-líquido, a extração sortiva em barra de agitação e a extração em fase sólida. Extração com o solvente diclorometano resultou em plasma livre de interferentes, tais como fármacos antiepilépticos co-prescritos, e apresentou taxas de recuperação em torno de 90% (extração líquido-líquido), 60% (extração em fase sólida) e 10% (extração sortiva em barra de agitação). A separação foi obtida utilizando-se coluna de fase reversa Select B e detecção ultravioleta (235 nm). A fase móvel foi composta por metanol:tampão acetato de sódio 0,125 M pH 4,4 (20:80, v/v). O método mostrou-se linear para o intervalo de 2,8 a 220,0 µg mL-1. Precisão intra- e interdias e a exatidão foram avaliadas em três concentrações; o desvio padrão relativo foi inferior a 10%. O limite de quantificação foi 2.8 µg mL-1. Este método foi aplicado para análise de amostras de plasma de pacientes com epilepsia e, desta forma, pode ser utilizado satisfatoriamente tanto para fins de farmacocinética quanto de monitorização terapêutica...


Assuntos
Humanos , Anticonvulsivantes/análise , Anticonvulsivantes/farmacocinética , Monitoramento Ambiental , Cromatografia Líquida de Alta Pressão , Epilepsia/tratamento farmacológico , Epilepsia/terapia
17.
Liver Int ; 35(11): 2425-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25939693

RESUMO

BACKGROUND & AIMS: Patients with cirrhosis present structural changes of human serum albumin (HSA) affecting non-oncotic functions. Ischaemia-modified albumin (IMA), which reflects the capacity to bind cobalt, has been associated to patient mortality during acute-on-chronic liver failure. This study aimed to assess whether circulating IMA is elevated in advanced cirrhosis and its relationship with severity of cirrhosis and specific complications. METHODS: A total of 127 cirrhotic patients hospitalized for an acute complication of the disease and 44 healthy controls were enrolled. Plasma IMA and IMA to albumin ratio (IMAr) were measured with a cobalt-binding assay. HSA isoforms carrying post-transcriptional molecular changes were assessed with HPLC-ESI-MS. The effect of endotoxemia on IMA was evaluated in rats with CCl4 -cirrhosis. RESULTS: IMA/IMAr is significantly higher in cirrhotic patients than in controls, but no correlations were found with prognostic scores. IMA did not correlate with the altered HSA isoforms. Ascites, renal impairment and hepatic encephalopathy did not influence IMA/IMAr levels. In contrast, IMA/IMAr is significantly higher in infected than non-infected patients. ROC curves showed that IMA/IMAr had similar discriminating performances for bacterial infection as C-reactive protein (CRP). Moreover, CRP and IMA were independently associated with bacterial infection. Consistently, endotoxin injection significantly increased IMA in cirrhotic, but not in healthy rats. CONCLUSIONS: IMA is elevated in patients with advanced cirrhosis. The IMA level does not correlate with disease severity scores, but it is specifically associated to bacterial infection, showing a discriminating performance similar to CRP. Further investigations to assess IMA as a novel diagnostic test for bacterial infection are advocated.


Assuntos
Insuficiência Hepática Crônica Agudizada/mortalidade , Infecções Bacterianas/diagnóstico , Cirrose Hepática/complicações , Idoso , Animais , Biomarcadores/sangue , Proteína C-Reativa/análise , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/sangue , Curva ROC , Ratos , Ratos Wistar , Albumina Sérica , Albumina Sérica Humana
18.
J Cell Physiol ; 230(10): 2447-2460, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25728514

RESUMO

SMYD3 is a histone lysine methyltransferase that plays an important role in transcriptional activation as a member of an RNA polymerase complex, and its oncogenic role has been described in different cancer types. We studied the expression and activity of SMYD3 in a preclinical model of colorectal cancer (CRC) and found that it is strongly upregulated throughout tumorigenesis both at the mRNA and protein level. Our results also showed that RNAi-mediated SMYD3 ablation impairs CRC cell proliferation indicating that SMYD3 is required for proper cancer cell growth. These data, together with the importance of lysine methyltransferases as a target for drug discovery, prompted us to carry out a virtual screening to identify new SMYD3 inhibitors by testing several candidate small molecules. Here we report that one of these compounds (BCI-121) induces a significant reduction in SMYD3 activity both in vitro and in CRC cells, as suggested by the analysis of global H3K4me2/3 and H4K5me levels. Of note, the extent of cell growth inhibition by BCI-121 was similar to that observed upon SMYD3 genetic ablation. Most of the results described above were obtained in CRC; however, when we extended our observations to tumor cell lines of different origin, we found that SMYD3 inhibitors are also effective in other cancer types, such as lung, pancreatic, prostate, and ovarian. These results represent the proof of principle that SMYD3 is a druggable target and suggest that new compounds capable of inhibiting its activity may prove useful as novel therapeutic agents in cancer treatment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Interferência de RNA/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima
19.
J Pharm Biomed Anal ; 113: 34-42, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25769668

RESUMO

Induced circular dichroism (ICD) is a spectroscopic phenomenon that provides versatile and useful methods for characterizing the structural and dynamic properties of the binding of drugs to target proteins. The understanding of biorecognition processes at the molecular level is essential to discover and validate new pharmacological targets, and to design and develop new potent and selective drugs. The present article reviews the main applications of ICD to drug binding studies on serum carrier proteins, going from the classic approaches for the derivation of drug binding parameters and the identification of binding sites, to an overview of the emerging trends for the characterization of binding modes by means of quantum chemical (QC) techniques. The advantages and limits of the ICD methods for the determination of binding parameters are critically reviewed; the capability to investigate the binding interactions of drugs and metabolites to their target proteins is also underlined, as well as the possibility of characterizing the binding sites to obtain a complete picture of the binding mechanism and dynamics. The new applications of ICD methods to identify stereoselective binding modes of drug/protein complexes are then reviewed with relevant examples. The combined application of experimental ICD spectroscopy and QC calculations is shown to identify qualitatively the bound conformations of ligands to target proteins even in the absence of a detailed structure of the binding sites, either obtained from experimental X-ray crystallography and NMR measurements or from computational models of the complex.


Assuntos
Proteínas de Transporte/metabolismo , Dicroísmo Circular/tendências , Preparações Farmacêuticas/metabolismo , Animais , Sítios de Ligação/fisiologia , Proteínas de Transporte/química , Dicroísmo Circular/métodos , Humanos , Preparações Farmacêuticas/química , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
20.
J Pharm Biomed Anal ; 111: 324-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25771488

RESUMO

The binding of some novel bicalutamide analogues to human serum albumin (HSA) and rat serum albumin (RSA) was investigated by surface plasmon resonance (SPR) based optical biosensor technique. The serum protein binding of the bicalutamide analogues was determined and compared to that of the parent compound. Furthermore, HSA and RSA were used as target plasma proteins, in order to highlight possible differences among species when performing pharmacokinetic studies. HSA and RSA were covalently immobilized on carboxymethyl dextran matrixes, using an amine coupling procedure. The anchoring method was validated by determining the dissociation constant (KD) of a standard analyte to confirm that the binding properties of the proteins were maintained. The ranking of the bicalutamide analogues for their HSA and RSA bound fractions was used to compare the behaviour of the two albumins. Most of the bicalutamide analogues showed higher binding levels with respect to the lead compound, (R)-bicalutamide. Further, meaningful differences in the binding level to the two serum proteins were obtained. The dissociation constants (KD) of the interaction between the lead compound, (R)-bicalutamide, and the two proteins were calculated. As a result, the KD obtained with HSA was one order of magnitude higher than that obtained with RSA. The observed differences in the HSA and RSA bonding of the bicalutamide analogues increase the knowledge on the possible low reliability in extrapolating the distribution data obtained on animals to humans. This work demonstrates that SPR based optical biosensor technique is well suited for the medium-high throughput screening of compounds' ligand binding to serum albumins.


Assuntos
Anilidas/metabolismo , Nitrilas/metabolismo , Albumina Sérica/metabolismo , Compostos de Tosil/metabolismo , Animais , Técnicas Biossensoriais/métodos , Proteínas Sanguíneas/metabolismo , Dextranos/metabolismo , Humanos , Chumbo/metabolismo , Ligação Proteica , Ratos , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...