Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 338: 139497, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451635

RESUMO

The colloidal transport of trace (Fe, Al, Ba, Pb, Sr, U) and ultra-trace (226Ra) elements was studied in a mining environment. An original approach combining 0.45 µm filtered water sampling, the Diffusive Gradient in Thin films (DGT) technique, mineralogical characterization, and geochemical modelling was developed and tested at 17 sampling points. DGT was used for the truly dissolved fraction of the elements of interest, while the 0.45 µm filtration includes both colloidal and truly dissolved fractions (together referred to as total dissolved fraction). Results indicated a colloidal fraction for Al (up to 50%), Ba (up to 86%), and Fe (up to 99%) explained by the presence of submicrometric grains of kaolinite, barite, and ferrihydrite, respectively. Furthermore, the total dissolved 226Ra concentration in the water samples reached up to 10-25 Bq/L (1.2-3.0 10-12 mol/L) at 3 sampling points, while the truly dissolved aqueous 226Ra concentrations were in the mBq/L range. Such high total dissolved concentrations are explained by retention on colloidal barite, accounting for 95% of the total dissolved 226Ra concentration. The distribution of 226Ra between the truly dissolved and colloidal fractions was accurately reproduced using a (Rax,Ba1-x)SO4 solid solution, with values of the Guggenheim parameter a0 close to ideality. 226Ra sorption on ferrihydrite and kaolinite, other minerals well known for their retention properties, could not explain the measured colloidal fractions despite their predominance. This illustrates the key role of barite in such environments. The measured concentrations of total dissolved U were very low at all the sampling points (<4.5 10-10 mol/L) and the colloidal fraction of U accounted for less than 65%. U sorption on ferrihydrite could account for the colloidal fraction. This original approach can be applied to other trace and ultra-trace elements to complement when necessary classical environmental surveys usually performed by filtration on 0.45 µm.


Assuntos
Sulfato de Bário , Oligoelementos , Caulim , Oligoelementos/análise , Água/análise , Monitoramento Ambiental/métodos
2.
J Environ Radioact ; 251-252: 106951, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35780670

RESUMO

226Ra is an ultra-trace element with important environmental implications for many industries (including water treatment and oil and mineral extraction). Its extremely low concentrations in natural environments do not allow for direct observation and measurement of the 226Ra-bearing minerals governing 226Ra mobility. To better understand the retention processes for 226Ra in rocks and soil, a synthesized assemblage of 226Ra-doped minerals was made, combining montmorillonite, ferrihydrite and barite. A new methodology was developed using alpha activity maps acquired using alpha autoradiography, and elemental maps by using SEM/EDS. These maps were processed using a global approach, considering the entirety of the signal. The comparison of the alpha activity map and the elemental map enabled a correlation to be established between the 226Ra activity and the chemical composition and identification of the main 226Ra-bearing mineral of the assemblage, from which we were able to estimate the contribution of each mineral to the total activity of the assemblage, and to quantify the 226Ra-activity for each mineral. This methodology makes it possible to link mineralogy and occurrence of 226Ra at the scale of the mineral (tens of µm). It can be applied to natural samples, including fine-grained samples with a complex mineralogy.


Assuntos
Monitoramento de Radiação , Autorradiografia , Bentonita , Minerais/análise , Solo
3.
Environ Sci Technol ; 54(12): 7320-7329, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32401022

RESUMO

Uranium and other radionuclides are prominent in many unconventional oil/gas shales and is a potential contaminant in flowback/produced waters due to the large volumes/types of chemicals injected into the subsurface during stimulation. To understand the stability of U before and after stimulation, a geochemical study of U speciation was carried out on three shales (Marcellus, Green River, and Barnett). Two types of samples for each shale were subjected to sequential chemical extractions: unreacted and shale-reacted with a synthetic hydraulic fracture fluid. A significant proportion of the total U (20-57%) was released from these three shales after reaction with fracture fluid, indicating that U is readily leachable. The total U released exceeds labile water-soluble and exchangeable fractions in unreacted samples, indicating that fluids leach more recalcitrant phases in the shale. Radiographic analysis of unreacted Marcellus shale thin sections shows U associated with detrital quartz and the clay matrix in the shale. Detrital zircon and TiO2 identified by an electron microprobe could account for the hot spots. This study shows that significant proportions of U in three shales are mobile upon stimulation. In addition, the extent of mobilization of U depends on the U species in these rocks.


Assuntos
Fraturamento Hidráulico , Urânio , Minerais , Gás Natural , Campos de Petróleo e Gás , Urânio/análise , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...