Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2303275120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094164

RESUMO

The presence of a cell membrane is one of the major structural components defining life. Recent phylogenomic analyses have supported the hypothesis that the last universal common ancestor (LUCA) was likely a diderm. Yet, the mechanisms that guided outer membrane (OM) biogenesis remain unknown. Thermotogae is an early-branching phylum with a unique OM, the toga. Here, we use cryo-electron tomography to characterize the in situ cell envelope architecture of Thermotoga maritima and show that the toga is made of extended sheaths of ß-barrel trimers supporting small (~200 nm) membrane patches. Lipidomic analyses identified the same major lipid species in the inner membrane (IM) and toga, including the rare to bacteria membrane-spanning ether-bound diabolic acids (DAs). Proteomic analyses revealed that the toga was composed of multiple SLH-domain containing Ompα and novel ß-barrel proteins, and homology searches detected variable conservations of these proteins across the phylum. These results highlight that, in contrast to the SlpA/OmpM superfamily of proteins, Thermotoga possess a highly diverse bipartite OM-tethering system. We discuss the implications of our findings with respect to other early-branching phyla and propose that a toga-like intermediate may have facilitated monoderm-to-diderm cell envelope transitions.


Assuntos
Bactérias , Proteômica , Membrana Celular , Parede Celular , Filogenia , Proteínas da Membrana Bacteriana Externa/genética
2.
Front Microbiol ; 12: 630573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767680

RESUMO

Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.

3.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355101

RESUMO

Endospore formation is used by members of the phylum Firmicutes to withstand extreme environmental conditions. Several recent studies have proposed endospore formation in species outside of Firmicutes, particularly in Rhodobacter johrii and Serratia marcescens, members of the phylum Proteobacteria. Here, we aimed to investigate endospore formation in these two species by using advanced imaging and analytical approaches. Examination of the phase-bright structures observed in R. johrii and S. marcescens using cryo-electron tomography failed to identify endospores or stages of endospore formation. We determined that the phase-bright objects in R. johrii cells were triacylglycerol storage granules and those in S. marcescens were aggregates of cellular debris. In addition, R. johrii and S. marcescens containing phase-bright objects do not possess phenotypic and genetic features of endospores, including enhanced resistance to heat, presence of dipicolinic acid, or the presence of many of the genes associated with endospore formation. Our results support the hypothesis that endospore formation is restricted to the phylum Firmicutes.Importance: Bacterial endospore formation is an important process that allows the formation of dormant life forms called spores. As such, organisms able to sporulate can survive harsh environmental conditions for hundreds of years. Here, we follow up on previous claims that two members of Proteobacteria, Serratia marcescens and Rhodobacter johrii, are able to form spores. We conclude that those claims were incorrect and show that the putative spores in R. johrii and S. marcescens are storage granules and cellular debris, respectively. This study concludes that endospore formation is still unique to the phylum Firmicutes.

5.
mBio ; 11(3)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546617

RESUMO

Plant root-associated microbes promote plant growth and elicit induced systemic resistance (ISR) to foliar pathogens. In an attempt to find novel growth-promoting and ISR-inducing strains, we previously identified strains of root-associated Pseudomonas spp. that promote plant growth but unexpectedly elicited induced systemic susceptibility (ISS) rather than ISR to foliar pathogens. Here, we demonstrate that the ISS-inducing phenotype is common among root-associated Pseudomonas spp. Using comparative genomics, we identified a single Pseudomonas fluorescens locus that is unique to ISS strains. We generated a clean deletion of the 11-gene ISS locus and found that it is necessary for the ISS phenotype. Although the functions of the predicted genes in the locus are not apparent based on similarity to genes of known function, the ISS locus is present in diverse bacteria, and a subset of the genes were previously implicated in pathogenesis in animals. Collectively, these data show that a single bacterial locus contributes to modulation of systemic plant immunity.IMPORTANCE Microbiome-associated bacteria can have diverse effects on health of their hosts, yet the genetic and molecular bases of these effects have largely remained elusive. This work demonstrates that a novel bacterial locus can modulate systemic plant immunity. Additionally, this work demonstrates that growth-promoting strains may have unanticipated consequences for plant immunity, and this is critical to consider when the plant microbiome is being engineered for agronomic improvement.


Assuntos
Loci Gênicos , Genômica , Imunidade Vegetal , Raízes de Plantas/microbiologia , Pseudomonas/genética , Regulação da Expressão Gênica de Plantas , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas , Folhas de Planta/microbiologia , Pseudomonas/patogenicidade
6.
mBio ; 9(6)2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401768

RESUMO

Pseudomonas fluorescens and related plant root ("rhizosphere")-associated species contribute to plant health by modulating defenses and facilitating nutrient uptake. To identify bacterial fitness determinants in the rhizosphere of the model plant Arabidopsis thaliana, we performed a high-throughput transposon sequencing (Tn-Seq) screen using the biocontrol and growth-promoting strain Pseudomonas sp. WCS365. The screen, which was performed in parallel on wild-type and immunocompromised Arabidopsis plants, identified 231 genes that increased fitness in the rhizosphere of wild-type plants. A subset of these genes decreased fitness in the rhizosphere of immunocompromised plants. We hypothesized that these genes might be involved in avoiding plant defenses and verified 7 Pseudomonas sp. WCS365 candidate genes by generating clean deletions. We found that two of these deletion mutants, ΔmorA (encoding a putative diguanylate cyclase/phosphodiesterase) and ΔspuC (encoding a putrescine aminotransferase), formed enhanced biofilms and inhibited plant growth. We found that mutants ΔspuC and ΔmorA induced pattern-triggered immunity (PTI) as measured by induction of an Arabidopsis PTI reporter and FLS2/BAK1-dependent inhibition of plant growth. We show that MorA acts as a phosphodiesterase to inhibit biofilm formation, suggesting a possible role in biofilm dispersal. We found that both putrescine and its precursor arginine promote biofilm formation that is enhanced in the ΔspuC mutant, which cannot break down putrescine, suggesting that putrescine might serve as a signaling molecule in the rhizosphere. Collectively, this work identified novel bacterial factors required to evade plant defenses in the rhizosphere.IMPORTANCE While rhizosphere bacteria hold the potential to improve plant health and fitness, little is known about the bacterial genes required to evade host immunity. Using a model system consisting of Arabidopsis and a beneficial Pseudomonas sp. isolate, we identified bacterial genes required for both rhizosphere fitness and for evading host immune responses. This work advances our understanding of how evasion of host defenses contributes to survival in the rhizosphere.


Assuntos
Arabidopsis/imunologia , Genoma Bacteriano , Pseudomonas fluorescens/genética , Rizosfera , Arabidopsis/microbiologia , Biofilmes/crescimento & desenvolvimento , Genes Bacterianos , Aptidão Genética , Imunidade Vegetal , Pseudomonas fluorescens/enzimologia , Putrescina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...