Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722155

RESUMO

Cucurbits are plants that have been used frequently as functional foods. This study includes the extraction, isolation, and characterisation of the mesocarp polysaccharide of Cucurbita moschata. The polysaccharide component was purified by gel filtration into three fractions (NJBTF1, NJBTF2, and NJBTF3) of different molecular weights. Characterisation includes the hydrodynamic properties, identification of monosaccharide composition, and bioactivity. Sedimentation velocity also indicated the presence of small amounts of additional discrete higher molecular weight components even after fractionation. Sedimentation equilibrium revealed respective weight average molecular weights of 90, 31, and 19 kDa, with the higher fractions (NJBTF1 and NJBTF2) indicating a tendency to self-associate. Based on the limited amount of data (combinations of 3 sets of viscosity and sedimentation data corresponding to the 3 fractions), HYDFIT indicates an extended, semi-flexible coil conformation. Of all the fractions obtained, NJBTF1 showed the highest bioactivity. All fractions contained galacturonic acid and variable amounts of neutral sugars. To probe further, the extent of glycosidic linkages in NJBTF1 was estimated using gas chromatography-mass spectrometry (GCMS), yielding a high galacturonic acid content (for pectin polysaccharide) and the presence of fructans-the first evidence of fructans (levan) in the mesocarp. Our understanding of the size and structural flexibility together with the high bioactivity suggests that the polysaccharide obtained from C. moschata has the potential to be developed into a therapeutic agent.

2.
PLoS One ; 13(3): e0195010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29596514

RESUMO

The structure and function of clinical dosage insulin and its analogues were assessed. This included 'native insulins' (human recombinant, bovine, porcine), 'fast-acting analogues' (aspart, glulisine, lispro) and 'slow-acting analogues' (glargine, detemir, degludec). Analytical ultracentrifugation, both sedimentation velocity and equilibrium experiments, were employed to yield distributions of both molar mass and sedimentation coefficient of all nine insulins. Size exclusion chromatography, coupled to multi-angle light scattering, was also used to explore the function of these analogues. On ultracentrifugation analysis, the insulins under investigation were found to be in numerous conformational states, however the majority of insulins were present in a primarily hexameric conformation. This was true for all native insulins and two fast-acting analogues. However, glargine was present as a dimer, detemir was a multi-hexameric system, degludec was a dodecamer (di-hexamer) and glulisine was present as a dimer-hexamer-dihexamer system. However, size-exclusion chromatography showed that the two hexameric fast-acting analogues (aspart and lispro) dissociated into monomers and dimers due to the lack of zinc in the mobile phase. This comprehensive study is the first time all nine insulins have been characterised in this way, the first time that insulin detemir have been studied using analytical ultracentrifugation and the first time that insulins aspart and glulisine have been studied using sedimentation equilibrium. The structure and function of these clinically administered insulins is of critical importance and this research adds novel data to an otherwise complex functional physiological protein.


Assuntos
Insulina/química , Insulina/farmacocinética , Sequência de Aminoácidos , Animais , Disponibilidade Biológica , Bovinos , Humanos , Suínos
3.
Eur Biophys J ; 46(3): 235-245, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27444285

RESUMO

Polysaccharides, the most abundant biopolymers, are required for a host of activities in lower organisms, animals, and plants. Their solution characterization is challenging due to their complex shape, heterogeneity, and size. Here, recently developed data analysis approaches were applied for traditional sedimentation equilibrium and velocity methods in order to investigate the molar mass distribution(s) of a subtype of polysaccharide, namely, mannans from four Candida spp. The molecular weight distributions of these mannans were studied using two recently developed equilibrium approaches: SEDFIT-MSTAR and MULTISIG, resulting in corroboratory distribution profiles. Additionally, sedimentation velocity data for all four mannans, analyzed using ls-g*(s) and Extended Fujita approaches, suggest that two of the fungal mannans (FM-1 and FM-3) have a unimodal distribution of molecular species whereas two others (FM-2 and FM-4) displayed bi-modal and broad distributions, respectively: this demonstrates considerable molecular heterogeneity in these polysaccharides, consistent with previous observations of mannans and polysaccharides in general. These methods not only have applications for the characterization of mannans but for other biopolymers such as polysaccharides, DNA, and proteins (including intrinsically disordered proteins).


Assuntos
Candida/química , Mananas/isolamento & purificação , Ultracentrifugação/métodos , Mananas/análise , Mananas/química , Peso Molecular , Soluções
4.
Sci Rep ; 4: 3861, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24457430

RESUMO

Unusual protein-like, partially reversible associative behaviour has recently been observed in solutions of the water soluble carbohydrates known as 6-deoxy-6-(ω-aminoalkyl)aminocelluloses, which produce controllable self-assembling films for enzyme immobilisation and other biotechnological applications. Now, for the first time, we have found a fully reversible self-association (tetramerisation) within this family of polysaccharides. Remarkably these carbohydrate tetramers are then seen to associate further in a regular way into supra-molecular complexes. Fully reversible oligomerisation has been hitherto completely unknown for carbohydrates and instead resembles in some respects the assembly of polypeptides and proteins like haemoglobin and its sickle cell mutation. Our traditional perceptions as to what might be considered "protein-like" and what might be considered as "carbohydrate-like" behaviour may need to be rendered more flexible, at least as far as interaction phenomena are concerned.


Assuntos
Celulose/análogos & derivados , Multimerização Proteica , Proteínas/química , Celulose/química , Centrifugação , Complexos Multiproteicos/síntese química , Estrutura Quaternária de Proteína , Proteínas/metabolismo , Soluções
5.
J Phys Chem B ; 115(36): 10725-9, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21793570

RESUMO

Examination of the solution behavior of ovalbumin by small-angle X-ray scattering, dynamic light scattering, and analytical ultracentrifugation methods confirms its existence as a 44-kDa monomer in 20 mM phosphate, pH 7.0, thereby contradicting the discord introduced by published SAXS studies in favor of a dimeric state for this protein at neutral pH. Although the theoretical interpretation of SAXS measurements considers the consequences of thermodynamic nonideality arising from the repulsive interactions between molecules only if they give rise to a positive second virial coefficient, the fact that A(2) is negative for the present system does not account for the earlier findings.


Assuntos
Ovalbumina/química , Hidrodinâmica , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...