Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(11): 7414-7429, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38433946

RESUMO

With China's increasing dependence on foreign wood, African wood has gradually become a potential imported species, but its use is seriously affected by problems such as unpleasant odors. In this study, we investigate the effect of heat treatment medium on odor-causing VOCs, decomposition of structural polymers, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) of hardwood. Samples of "Afrormosia" and "Newtonia" wood were heated under air and palm oil for two hours at 160 °C, 180 °C, and 200 °C, respectively. Then, the nature of the odor of each VOC emitted by the wood before and after heat treatment was identified using the GCMS method. The decomposition of hemicelluloses, cellulose and lignin in wood samples was examined using a ThermoGravimetric Analyzer coupled to Fourier Transform InfraRed spectrometry (TGA-FTIR). The 3-point bending test was used to evaluate MOR and MOE. The results indicate that the main VOCs responsible for unpleasant smells are acetic acid and hexanal; the reduction in hexanal emissions after heat treatment is mainly due to the treatment temperature, while the reduction in acetic acid emissions depends on the heat treatment medium and is due to the chemical interactions between palm oil and acetic acid; thus, the heat treatment under palm oil reduces the percentage area of VOCs with unpleasant odors in Afrormosia and Newtonia wood better than the heat treatment under air. Based on TGA-3D FTIR analysis and mechanical results, the reduction in MOR is greater in heat treatment under air because the said treatment induces a greater loss of woody matter, which was characterized by higher H2O and CO emissions during heat treatment of wood under palm oil than during heat treatment of wood under air. On the other hand, palm oil more than air, promotes lignin deacetylation, which is characterized by the fact that the 1050 cm-1 wavelength peak was far higher in samples treated with palm oil than in those treated under air; and this might explain why heat treatment under palm oil reduces MOE more than heat treatment under air.

2.
Polymers (Basel) ; 15(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36772074

RESUMO

In recent years, China is increasingly dependent on imported wood. Afrormosia and Newtonia are some of the imported species with good utilization potential. However, both of them also have problems with poor dimensional stability. In order to make better use of these two types of wood, the influence of heat treatment under air and palm oil conditions on the color, dimensional stability, and hygroscopicity of Afrormosia and Newtonia was investigated. The Afrormosia and Newtonia wood samples were heated in air or palm oil medium for two hours at 160 °C, 180 °C and 200 °C, respectively. Then, the color, weight changes, swelling, moisture absorption and chemical structure were evaluated for each case. As results, the heat treatments with air or palm oil increased the dark color of Newtonia and Afrormosia wood and this increase was proportional to the treatment temperature. The tangential and radial swelling coefficient for air heat treatment of Afrormosia wood at 200 °C were, respectively, reduced by 24.59% and 19.58%, while this reduction for Newtonia was 21.32% and 14.80%. The heat treatment in palm oil further improved the stability and hygroscopicity of the wood, showing that the Afrormosia samples treated by palm oil at 200 °C underwent a decrease of its tangential and radial swelling coefficient, respectively, by 49.34% and 45.88%, whereas the tangential and radial swelling coefficient of Newtonia treated under the same conditions were reduced by 42.85% and 33.63%, respectively. The heat treatments of Afrormosia and Newtonia samples under air at 200 °C diminished the water absorption by 21.67% and 22.12%. The water absorption of Afrormosia and Newtonia heat-treated under palm oil at 200 °C was reduced, respectively, by 39.40% and 37.49%. Moreover, the FTIR analysis showed the decrease of hydroxyl groups in proportion to the wood treatment temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...