Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 344: 140336, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778646

RESUMO

This paper reports the optimization of the electro-Fenton (EF) process using different anode materials for the degradation of Methylene Blue (MB) dye as a model compound. The cathode used was an air-diffusion PTFE, while three different anode materials (Pt, DSA, and self-doped TiO2 nanotubes - SD-TNT) were tested individually. A full factorial design (FFD) with a central point combined with response surface methodology (RSM) was employed to optimize the experimental variables, including solution pH, applied current, and anode material. The optimized EF conditions involved a pH of 4.0, a current of 100 mA, and an SD-TNT anode for 120 min of electrolysis. Under these conditions, the MB solution achieved complete decolorization and 45% of total organic carbon (TOC) removal after 120 min of EF treatment. The findings indicate that the hydroxyl radical (•OH) plays a crucial role as the primary oxidizing agent in the EF process. The decay of MB followed pseudo-first-order kinetics, reflecting a consistent formation of •OH radicals that effectively attacked the MB dye and its subproducts during mineralization. Moreover, the EF process exhibited superior performance in terms of energy consumption (EC) and mineralization current efficiency (ECM) in the initial treatment stages, while the presence of recalcitrant by-products and loss of anode self-doping impacted performance in the later stages. The optimized EF conditions and the understanding gained from this study contribute to the advancement of sustainable wastewater treatment strategies for the removal of organic dyes.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Azul de Metileno , Titânio , Eletrodos , Oxirredução , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química
2.
Anal Chem ; 90(12): 7651-7658, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29767498

RESUMO

TiO2 nanotube electrodes were self-doped by electrochemical cathodic polarization, potentially converting Ti4+ into Ti3+, and thereby increasing both the normalized conductance and capacitance of the electrodes. One-hundred (from 19.2 ± 0.1 µF cm-2 to 1.9 ± 0.1 mF cm-2 for SD-TNT) and two-fold (from ∼6.2 to ∼14.4 mS cm-2) concomitant increases in capacitance and conductance, respectively, were achieved in self-doped TiO2 nanotubes; this was compared with the results for their undoped counterparts. The increases in the capacitance and conductance indicate that the Ti3+ states enhance the density of the electronic states; this is attributed to an existing relationship between the conductance and capacitance for nanoscale structures built on macroscopic electrodes. The ratio between the conductance and capacitance was used to detect and quantify, in a reagentless manner, the triamterene (TRT) diuretic by designing an appropriate doping level of TiO2 nanotubes. The sensitivity was improved when using immittance spectroscopy (Patil et al. Anal. Chem. 2015, 87, 944-950; Bedatty Fernandes et al. Anal. Chem. 2015, 87, 12137-12144) (2.4 × 106 % decade-1) compared to cyclic voltammetry (5.8 × 105 % decade-1). Furthermore, a higher linear range from 0.5 to 100 µmol L-1 (5.0 to 100 µmol L-1 for cyclic voltammetry measurements) and a lower limit-of-detection of approximately 0.2 µmol L-1 were achieved by using immittance function methodology (better than the 4.1 µmol L-1 obtained by using cyclic voltammetry).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...