Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cancer Cell ; 42(4): 623-645.e10, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490212

RESUMO

Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Neoplasias/genética
2.
Methods Mol Biol ; 2748: 167-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070115

RESUMO

Genetic modification of tumor-infiltrating lymphocytes (TILs) or circulating T cells has become an important avenue in cancer therapy. Here we describe a comprehensive method for establishing and expanding TIL cultures and genetically modifying them with a gene of interest (GOI) via retroviral transduction or mRNA transfection. The method includes all the important steps starting with TIL extraction from tumors through to the maintenance of the genetically modified TILs. The protocol includes instructions for retroviral transduction and mRNA transfection of circulating T cells or T-cell lines. The GOIs most commonly introduced into the target cells are chimeric antigen receptors (CARs); genetic adjuvants, such as membrane-bound interleukins; and antitumor T-cell receptors (TCRs).


Assuntos
Linfócitos do Interstício Tumoral , Linfócitos T , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T/metabolismo , Transfecção , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular , Linfócitos T CD8-Positivos , Imunoterapia Adotiva/métodos
3.
Cytotherapy ; 25(12): 1349-1360, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37690020

RESUMO

Autologous cell-based therapeutics have gained increasing attention in recent years because of their efficacy at treating diseases with limited therapeutic options. Chimeric antigen receptor (CAR) T-cell therapy has demonstrated clinical success in hematologic oncology indications, providing critically ill patients with a potentially curative therapy. Although engineered cell therapies such as CAR T cells provide new options for patients with unmet needs, the high cost and complexity of manufacturing may hinder clinical and commercial translation. The Cocoon Platform (Lonza, Basel, Switzerland) addresses many challenges, such as high labor demand, process consistency, contamination risks and scalability, by enabling efficient, functionally closed and automated production, whether at clinical or commercial scale. This platform is customizable and easy to use and requires minimal operator interaction, thereby decreasing process variability. We present two processes that demonstrate the Cocoon Platform's capabilities. We employed different T-cell activation methods-OKT3 and CD3/CD28 Dynabeads (Thermo Fisher Scientific, Waltham, MA, USA)-to generate final cellular products that meet the critical quality attributes of a clinical autologous CAR T-cell product. This study demonstrates a manufacturing solution for addressing challenges with manual methods of production and facilitating the scale-up of autologous cell therapy.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Citocinas , Linfócitos T , Imunoterapia Adotiva/métodos
4.
Cancer Immunol Res ; 11(7): 909-924, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37074069

RESUMO

Immunotherapy has revolutionized the treatment of advanced melanoma. Because the pathways mediating resistance to immunotherapy are largely unknown, we conducted transcriptome profiling of preimmunotherapy tumor biopsies from patients with melanoma that received PD-1 blockade or adoptive cell therapy with tumor-infiltrating lymphocytes. We identified two melanoma-intrinsic, mutually exclusive gene programs, which were controlled by IFNγ and MYC, and the association with immunotherapy outcome. MYC-overexpressing melanoma cells exhibited lower IFNγ responsiveness, which was linked with JAK2 downregulation. Luciferase activity assays, under the control of JAK2 promoter, demonstrated reduced activity in MYC-overexpressing cells, which was partly reversible upon mutagenesis of a MYC E-box binding site in the JAK2 promoter. Moreover, silencing of MYC or its cofactor MAX with siRNA increased JAK2 expression and IFNγ responsiveness of melanomas, while concomitantly enhancing the effector functions of T cells coincubated with MYC-overexpressing cells. Thus, we propose that MYC plays a pivotal role in immunotherapy resistance through downregulation of JAK2.


Assuntos
Melanoma , Humanos , Regulação para Baixo , Melanoma/genética , Melanoma/terapia , Melanoma/patologia , Imunoterapia , Linfócitos T/patologia , Interferon gama/genética , Janus Quinase 2/genética
5.
Front Oncol ; 13: 1116328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937426

RESUMO

A major challenge in developing an effective adoptive cancer immunotherapy is the ex-vivo generation of tumor-reactive cells in sufficient numbers and with enhanced cytotoxic potential. It was recently demonstrated that culturing of activated murine CD8+ T-cells on a "Synthetic Immune Niche" (SIN), consisting of immobilized CCL21 and ICAM-1, enhances T-cell expansion, increases their cytotoxicity against cultured cancer cells and suppresses tumor growth in vivo. In the study reported here, we have tested the effect of the CCL21+ICAM1 SIN, on the expansion and cytotoxic phenotype of Tumor Infiltrating Lymphocytes (TIL) from melanoma patients, following activation with immobilized anti-CD3/CD28 stimulation, or commercial activation beads. The majority of TIL tested, displayed higher expansion when cultured on the coated SIN compared to cells incubated on uncoated substrate and a lower frequency of TIM-3+CD8+ cells after stimulation with anti-CD3/CD28 beads. Comparable enhancement of TIL proliferation was obtained by the CCL21+ICAM1 SIN, in a clinical setting that included a 14-day rapid expansion procedure (REP). Co-incubation of post-REP TIL with matching target cancerous cells demonstrated increased IFNγ secretion beyond baseline in most of the TIL cultures, as well as a significant increase in granzyme B levels following activation on SIN. The SIN did not significantly alter the relative frequency of CD8/CD4 populations, as well as the expression of CD28, CD25, several exhaustion markers and the differentiation status of the expanded cells. These results demonstrate the potential capacity of the CCL21+ICAM1 SIN to reinforce TIL-based immunotherapy for cancer patients.

6.
Leukemia ; 37(1): 154-163, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36335261

RESUMO

Persistence or recurrence of large B-cell lymphoma after CD19-CAR-T is common, yet data guiding management are limited. We describe outcomes and features following CAR-T treatment failure. Of 305 adults who received CD19-CAR-T, 182 experienced disease recurrence or progression (1-year cumulative incidence 63% [95%CI: 57-69]). Of 52 post-CAR-T biopsies evaluated by flow cytometry, 49 (94%) expressed CD19. Subsequent anti-cancer treatment was administered in 135/182 (74%) patients with CAR-T treatment failure. Median OS from the first post-CAR-T treatment was 8 months (95%CI 5.6-11.0). Polatuzumab-, standard chemotherapy-, and lenalidomide-based treatments were the most common approaches after CAR-T. No complete responses (CRs) were observed with conventional chemotherapy, while CR rates exceeding 30% were seen following polatuzumab- or lenalidomide-based therapies. Factors associated with poor OS among patients treated post-CAR-T were pre-CAR-T bulky disease (HR 2.27 [1.10-4.72]), lack of response to CAR-T (2.33 [1.02-5.29]), age >65 years (HR 2.65 [1.49-4.73]) and elevated LDH at post-CAR-T treatment (HR 2.95 [1.61-5.38]). The presence of ≥2 of these factors was associated with inferior OS compared to ≤1 (56% vs. 19%). In this largest analysis to date of patients who progressed or relapsed after CD19-CAR-T, survival is poor, though novel agents such as polatuzumab and lenalidomide may have hold promise.


Assuntos
Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Adulto , Humanos , Idoso , Receptores de Antígenos Quiméricos/uso terapêutico , Lenalidomida/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Imunoterapia Adotiva , Indução de Remissão , Antígenos CD19
7.
Sci Transl Med ; 14(676): eabo3724, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542693

RESUMO

Patients with single large-scale mitochondrial DNA (mtDNA) deletion syndromes (SLSMDs) usually present with multisystemic disease, either as Pearson syndrome in early childhood or as Kearns-Sayre syndrome later in life. No disease-modifying therapies exist for SLSMDs. We have developed a method to enrich hematopoietic cells with exogenous mitochondria, and we treated six patients with SLSMDs through a compassionate use program. Autologous CD34+ hematopoietic cells were augmented with maternally derived healthy mitochondria, a technology termed mitochondrial augmentation therapy (MAT). All patients had substantial multisystemic disease involvement at baseline, including neurologic, endocrine, or renal impairment. We first assessed safety, finding that the procedure was well tolerated and that all study-related severe adverse events were either leukapheresis-related or related to the baseline disorder. After MAT, heteroplasmy decreased in the peripheral blood in four of the six patients. An increase in mtDNA content of peripheral blood cells was measured in all six patients 6 to 12 months after MAT as compared baseline. We noted some clinical improvement in aerobic function, measured in patients 2 and 3 by sit-to-stand or 6-min walk testing, and an increase in the body weight of five of the six patients suffering from very low body weight before treatment. Quality-of-life measurements as per caregiver assessment and physical examination showed improvement in some parameters. Together, this work lays the ground for clinical trials of MAT for the treatment of patients with mtDNA disorders.


Assuntos
Síndrome de Kearns-Sayre , Humanos , Criança , Pré-Escolar , Deleção de Sequência , Síndrome de Kearns-Sayre/genética , Mitocôndrias/genética , DNA Mitocondrial/genética , Células-Tronco Hematopoéticas
8.
Front Oncol ; 12: 1024362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276077

RESUMO

Adoptive cell therapy with chimeric antigen receptor (CAR) T cells has become an efficient treatment option for patients with hematological malignancies. FDA approved CAR T products are manufactured in centralized facilities from fresh or frozen leukapheresis and the cryopreserved CAR T infusion product is shipped back to the patient. An increasing number of clinical centers produce CAR T cells on-site, which enables the use of fresh and cryopreserved PBMCs and CAR T cells. Here we determined the effect of cryopreservation on PBMCs and CD19 CAR T cells in a cohort of 118 patients treated with fresh CAR T cells and in several patients head-to-head. Cryopreserved PBMCs, obtained from leukapheresis products, contained less erythrocytes and T cells, but were sufficient to produce CAR T cells for therapy. There was no correlation between the recovery of PBMCs and the transduction efficacy, the number of CAR T cells obtained by the end of the manufacturing process, the in vitro reactivity, or the response rate to CAR T therapy. We could show that CAR T cells cryopreserved during the manufacturing process, stored and resumed expansion at a later time point, yielded sufficient cell numbers for treatment and led to complete remissions. Phenotype analysis including T cell subtypes, chemokine receptor and co-inhibitory/stimulatory molecules, revealed that fresh CAR T cells expressed significantly more TIM-3 and contained less effector T cells in comparison to their frozen counterparts. In addition, fresh CAR T infusion products demonstrated increased in vitro anti-tumor reactivity, however cryopreserved CAR T cells still showed high anti-tumor potency and specificity. The recovery of cryopreserved CAR T cells was similar in responding and non-responding patients. Although fresh CAR T infusion products exhibit higher anti-tumor reactivity, the use of frozen PBMCs as staring material and frozen CAR T infusion products seems a viable option, as frozen products still exhibit high in vitro potency and cryopreservation did not seem to affect the clinical outcome.

9.
Leuk Lymphoma ; 63(14): 3385-3393, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36111694

RESUMO

Tisagenlecleucel (tisa-cel) is an anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for patients with relapsed/refractory large B-cell lymphoma. Outcomes of patients with out-of-commercial specification (OOS) CAR T products are not well characterized. We therefore assessed 37 adult patients who underwent leukapheresis for tisa-cel therapy in a single center. In nine (24%) patients, manufactured tisa-cel was considered OOS. Three of them (33%) received tisa-cel after institutional review board approval; 2/9 (22%) did not receive tisa-cel due to disease progression; and 4/9 (44%) received academic point-of-care (POC) CAR T-cell as salvage therapy, at a median of 35 days following OOS notification. Three of those four patients achieved a complete response. In univariate analysis, risk factors for OOS were ≥ 4 prior therapies or previous bendamustine exposure. In conclusion, we report high OOS incidence of 24% in real-life setting. Forty-four percent of those patients received POC CAR T-cell as salvage therapy.


Assuntos
Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B , Adulto , Humanos , Antígenos CD19 , Linfoma Difuso de Grandes Células B/patologia , Recidiva Local de Neoplasia/etiologia , Sistemas Automatizados de Assistência Junto ao Leito , Receptores de Antígenos de Linfócitos T
10.
Cancer Immunol Res ; 10(9): 1127-1140, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35731225

RESUMO

The effect of tumor/T-cell interactions on subsequent immune infiltration is undefined. Here, we report that preexposure of melanoma cells to cognate T cells enhanced the chemotaxis of new T cells in vitro. The effect was HLA class I-restricted and IFNγ-dependent, as it was abolished by ß2M-knockdown, MHC-blocking antibodies, JAK1 inhibitors, JAK1-silencing and IFNgR1-blocking antibodies. RNA sequencing (RNA-seq) of 73 melanoma metastases showed a significant correlation between the interferon-inducible p150 isoform of adenosine-deaminase-acting-on-RNA-1 (ADAR1) enzyme and immune infiltration. Consistent with this, cocultures of cognate melanoma/T-cell pairs led to IFNγ-dependent induction of ADAR1-p150 in the melanoma cells, as visualized in situ using dynamic cell blocks, in ovo using fertilized chick eggs, and in vitro with Western blots. ADAR1 staining and RNA-seq in patient-derived biopsies following immunotherapy showed a rise in ADAR1-p150 expression concurrently with CD8+ cell infiltration and clinical response. Silencing ADAR1-p150 abolished the IFNγ-driven enhanced T-cell migration, confirming its mechanistic role. Silencing and overexpression of the constitutive isoform of ADAR1, ADAR1-p110, decreased and increased T-cell migration, respectively. Chemokine arrays showed that ADAR1 controls the secretion of multiple chemokines from melanoma cells, probably through microRNA-mediated regulation. Chemokine receptor blockade eliminated the IFNγ-driven T-cell chemotaxis. We propose that the constitutive ADAR1 downregulation observed in melanoma contributes to immune exclusion, whereas antigen-specific T cells induce ADAR1-p150 by releasing IFNγ, which can drive T-cell infiltration.


Assuntos
Adenosina Desaminase , Melanoma , MicroRNAs , Proteínas de Ligação a RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Anticorpos Bloqueadores , Movimento Celular , Humanos , Melanoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética
11.
Cells ; 11(7)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406703

RESUMO

Despite the high rates of complete remission following chimeric antigen receptor (CAR) T cell therapy, its full capacity is currently limited by the generation of dysfunctional CAR T cells. Senescent or exhausted CAR T cells possess poor targeting and effector functions, as well as impaired cell proliferation and persistence in vivo. Strategies to detect, prevent or reverse T cell exhaustion are therefore required in order to enhance the effectiveness of CAR T immunotherapy. Here we report that CD19 CAR T cells from non-responding patients with B cell malignancies show enrichment of CD8+ cells with exhausted/senescent phenotype and display a distinct transcriptional signature with dysregulation of genes associated with terminal exhaustion. Furthermore, CAR T cells from non-responding patients exhibit reduced proliferative capacity and decreased IL-2 production in vitro, indicating functional impairment. Overall, our work reveals potential mediators of resistance, paving the way to studies that will enhance the efficacy and durability of CAR T therapy in B cell malignancies.


Assuntos
Imunoterapia Adotiva , Leucemia de Células B , Receptores de Antígenos Quiméricos , Antígenos CD19 , Linfócitos B , Humanos , Leucemia de Células B/genética , Leucemia de Células B/terapia
12.
Br J Haematol ; 197(4): 475-481, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35224724

RESUMO

CD28-based CD19 chimaeric antigen receptor-modified (CAR-)Tcells were recently FDA-approved for adult acute lymphoblastic leukaemia (ALL). We report long-term outcome of 37 children and young adults treated with autologous CD19 CAR-T cells. The complete remission rate was 86%, of which 71% were polymerase chain reaction (PCR) minimal residual disease (MRD)-negative, 14% were MRD-negative by flow cytometry, and 14% were PCR MRD-positive. 26 patients proceeded to subsequent haematopoietic stem cell transplant (HSCT). 11 patients had a CD19-postive relapse (eight post HSCT and three without) and one had a CD19-negative relapse. All relapse events occurred within two years from cell therapy. With a median follow-up of three years, the median event-free survival (EFS) is 17 months and the median overall survival (OS) is not reached. The three-year EFS is 41% and OS is 56%. Patients with >5% blasts in the bone marrow prior to lymphodepletion had an inferior EFS. All patients with a PCR MRD-positive result at day 28 had relapsed after CAR-T-cell therapy. A prior HSCT did not significantly affect outcome, but a consolidative transplant after achieving remission improved long-term results. Overall, prelymphodepletion disease burden and molecular MRD negativity following CAR-T cells are predictors of long-term outcome following CD19 CAR-T-cell therapy for ALL.


Assuntos
Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Doença Aguda , Antígenos CD19 , Antígenos CD28 , Criança , Humanos , Imunoterapia Adotiva/métodos , Recidiva Local de Neoplasia/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfócitos T , Adulto Jovem
13.
J Clin Oncol ; 40(4): 369-381, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34860572

RESUMO

PURPOSE: Tumor-intrinsic features may render large B-cell lymphoma (LBCL) insensitive to CD19-directed chimeric antigen receptor T cells (CAR-T). We hypothesized that TP53 genomic alterations are detrimental to response outcomes in LBCL treated with CD19-CAR-T. MATERIALS AND METHODS: Patients with LBCL treated with CD19-CAR-T were included. Targeted next-generation sequencing was performed on pre-CAR-T tumor samples in a subset of patients. Response and survival rates by histologic, cytogenetic, and molecular features were assessed. Within a cohort of newly diagnosed LBCL with genomic and transcriptomic profiling, we studied interactions between cellular pathways and TP53 status. RESULTS: We included 153 adults with relapsed or refractory LBCL treated with CD19-CAR-T (axicabtagene ciloleucel [50%], tisagenlecleucel [32%], and lisocabtagene maraleucel [18%]). Outcomes echoed pivotal trials: complete response (CR) rate 54%, median overall survival (OS) 21.1 months (95% CI, 14.8 to not reached), and progression-free survival 6 months (3.4 to 9.7). Histologic and cytogenetic LBCL features were not predictive of CR. In a subset of 82 patients with next-generation sequencing profiling, CR and OS rates were comparable with the unsequenced cohort. TP53 alterations (mutations and/or copy number alterations) were common (37%) and associated with inferior CR and OS rates in univariable and multivariable regression models; the 1-year OS in TP53-altered LBCL was 44% (95% CI, 29 to 67) versus 76% (65 to 89) in wild-type (P = .012). Transcriptomic profiling from a separate cohort of patients with newly diagnosed lymphoma (n = 562) demonstrated that TP53 alterations are associated with dysregulation of pathways related to CAR-T-cell cytotoxicity, including interferon and death receptor signaling pathway and reduced CD8 T-cell tumor infiltration. CONCLUSION: TP53 is a potent tumor-intrinsic biomarker that can inform risk stratification and clinical trial design in patients with LBCL treated with CD19-CAR-T. The role of TP53 should be further validated in independent cohorts.


Assuntos
Antígenos CD19/imunologia , Biomarcadores Tumorais/genética , Imunoterapia Adotiva , Linfoma de Células B/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Proteína Supressora de Tumor p53/genética , Idoso , Produtos Biológicos/uso terapêutico , Variações do Número de Cópias de DNA , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/mortalidade , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Linfoma de Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação , Valor Preditivo dos Testes , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos Quiméricos/genética , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Linfócitos T/imunologia , Fatores de Tempo , Resultado do Tratamento
14.
J Natl Cancer Inst ; 114(3): 436-445, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-34581788

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells directed against CD19 (CART19) are effective in B-cell malignancies, but little is known about the molecular factors predicting clinical outcome of CART19 therapy. The increasingly recognized relevance of epigenetic changes in cancer immunology prompted us to determine the impact of the DNA methylation profiles of CART19 cells on the clinical course. METHODS: We recruited 114 patients with B-cell malignancies, comprising 77 patients with acute lymphoblastic leukemia and 37 patients with non-Hodgkin lymphoma who were treated with CART19 cells. Using a comprehensive DNA methylation microarray, we determined the epigenomic changes that occur in the patient T cells upon transduction of the CAR vector. The effects of the identified DNA methylation sites on clinical response, cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, event-free survival, and overall survival were assessed. All statistical tests were 2-sided. RESULTS: We identified 984 genomic sites with differential DNA methylation between CAR-untransduced and CAR-transduced T cells before infusion into the patient. Eighteen of these distinct epigenetic loci were associated with complete response (CR), adjusting by multiple testing. Using the sites linked to CR, an epigenetic signature, referred to hereafter as the EPICART signature, was established in the initial discovery cohort (n = 79), which was associated with CR (Fisher exact test, P < .001) and enhanced event-free survival (hazard ratio [HR] = 0.36; 95% confidence interval [CI] = 0.19 to 0.70; P = .002; log-rank P = .003) and overall survival (HR = 0.45; 95% CI = 0.20 to 0.99; P = .047; log-rank P = .04;). Most important, the EPICART profile maintained its clinical course predictive value in the validation cohort (n = 35), where it was associated with CR (Fisher exact test, P < .001) and enhanced overall survival (HR = 0.31; 95% CI = 0.11 to 0.84; P = .02; log-rank P = .02). CONCLUSIONS: We show that the DNA methylation landscape of patient CART19 cells influences the efficacy of the cellular immunotherapy treatment in patients with B-cell malignancy.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos , Epigênese Genética , Humanos , Imunoterapia Adotiva/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/genética
15.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33990415

RESUMO

BACKGROUND: Adoptive cell therapy with T cells genetically engineered to express a chimeric antigen receptor (CAR-T) or tumor-infiltrating T lymphocytes (TIL) demonstrates impressive clinical results in patients with cancer. Lymphodepleting preconditioning prior to cell infusion is an integral part of all adoptive T cell therapies. However, to date, there is no standardization and no data comparing different non-myeloablative (NMA) regimens. METHODS: In this study, we compared NMA therapies with different doses of cyclophosphamide or total body irradiation (TBI) in combination with fludarabine and evaluated bone marrow suppression and recovery, cytokine serum levels, clinical response and adverse events. RESULTS: We demonstrate that a cumulative dose of 120 mg/kg cyclophosphamide and 125 mg/m2 fludarabine (120Cy/125Flu) and 60Cy/125Flu preconditioning were equally efficient in achieving deep lymphopenia and neutropenia in patients with metastatic melanoma, whereas absolute lymphocyte counts (ALCs) and absolute neutrophil counts were significantly higher following 200 cGyTBI/75Flu-induced NMA. Thrombocytopenia was most profound in 120Cy/125Flu patients. 30Cy/75Flu-induced preconditioning in patients with acute lymphoblastic leukemia resulted in a minor ALC decrease, had no impact on platelet counts and did not yield deep neutropenia. Following cell infusion, 120Cy/125Flu patients with objective tumor response had significantly higher ALC and significant lower inflammatory indexes, such as neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR). Receiver-operating characteristics curve analysis 7 days after cell infusion was performed to determine the cut-offs, which distinguish between responding and non-responding patients in the 120Cy/125Flu cohort. NLR≤1.79 and PLR≤32.7 were associated with clinical response and overall survival. Cytokine serum levels did not associate with clinical response in patients with TIL. Patients in the 120Cy/125Flu cohort developed significantly more acute NMA-related adverse events, including thrombocytopenia, febrile neutropenia and cardiotoxicity, and stayed significantly longer in hospital compared with the 60Cy/125Flu and TBI/75Flu cohorts. CONCLUSIONS: Bone marrow depletion and recovery were equally affected by 120Cy/125Flu and 60Cy/125Flu preconditioning; however, toxicity and consequently duration of hospitalization were significantly lower in the 60Cy/125Flu cohort. Patients in the 30Cy/75Flu and TBI/75Flu groups rarely developed NMA-induced adverse events; however, both regimens were not efficient in achieving deep bone marrow suppression. Among the regimens, 60Cy/125Flu preconditioning seems to achieve maximum effect with minimum toxicity.


Assuntos
Ciclofosfamida/uso terapêutico , Imunoterapia Adotiva , Depleção Linfocítica , Melanoma/terapia , Agonistas Mieloablativos/uso terapêutico , Neoplasias Cutâneas/terapia , Linfócitos T/transplante , Condicionamento Pré-Transplante , Vidarabina/análogos & derivados , Irradiação Corporal Total , Adulto , Ensaios Clínicos Fase II como Assunto , Ciclofosfamida/efeitos adversos , Citocinas/sangue , Feminino , Humanos , Imunoterapia Adotiva/efeitos adversos , Tempo de Internação , Depleção Linfocítica/efeitos adversos , Masculino , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/secundário , Pessoa de Meia-Idade , Agonistas Mieloablativos/efeitos adversos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Recuperação de Função Fisiológica , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Condicionamento Pré-Transplante/efeitos adversos , Resultado do Tratamento , Vidarabina/farmacologia , Irradiação Corporal Total/efeitos adversos
16.
Nature ; 592(7852): 138-143, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731925

RESUMO

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Assuntos
Antígenos de Bactérias/análise , Antígenos de Bactérias/imunologia , Bactérias/imunologia , Antígenos HLA/imunologia , Melanoma/imunologia , Melanoma/microbiologia , Peptídeos/análise , Peptídeos/imunologia , Apresentação de Antígeno , Bactérias/classificação , Bactérias/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Antígenos HLA/análise , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/patologia , Metástase Neoplásica/imunologia , Filogenia , RNA Ribossômico 16S/genética
17.
Leuk Lymphoma ; 62(7): 1692-1701, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33563059

RESUMO

CAR T-cells are approved for the treatment of relapsed and refractory leukemia and lymphoma. Here, we studied the infectious complications in 88 patients treated with CD28-based CD19 CAR T-cells. Overall, 36 infections were documented in 24 patients within the first month after CAR T-cell infusion: Six events of bacteremia, sixteen focal bacterial infections, and fourteen systemic or localized viral infections. Seven patients had nine infectious episodes beyond the first 30 days of follow-up, including three events of bacteremia, three focal bacterial, two viral and one fungal infection. The presence of neutropenia, neutropenic fever and lack of response to treatment were associated with a higher rate of infections. Children had less severe infections than adults. In a multivariate analysis lack of response to treatment was the only significant risk factor. Overall, the incidence of bacterial infections following CAR T-cells is modest especially in children and in patients responding to therapy.


Assuntos
Antígenos CD19 , Antígenos CD28 , Imunoterapia Adotiva , Leucemia/terapia , Linfoma/terapia , Adulto , Criança , Humanos , Fatores de Risco , Linfócitos T
18.
Bone Marrow Transplant ; 56(5): 1134-1143, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33268830

RESUMO

We present three patients with aggressive non-Hodgkin's B-cell lymphoma (NHL) who received anti-CD19 chimeric antigen receptor T (CAR T) cells therapy after failure of several lines of chemotherapy that developed pseudo-progression. One-week clinical and radiological findings were consistent with tumor progression. Positron emission tomography-computed tomography (PET-CT) at 1 month post CAR T cells administration was consistent with treatment response. The rapid tumor growth and subsequent resolution are suggestive of tumor pseudo-progression mediated secondary to infiltration and immune activation of CAR T cells. Overall, 56 adult patients with NHL were enrolled in a phase 1b/2 in house clinical study with CD19 CAR T cells. Out of them 22/56 patients progressed as per PET-CT the 1 month post CAR T cells. In 14 patients, signs of progression started 7-10 days after CAR T cells infusion. In 11/14 patients, it was true progression, while in 3 it was pseudo-progression. Additional studies are warranted to describe the extent of this phenomenon and evaluate correlation with the CAR T activity and long-term disease control.


Assuntos
Linfoma de Células B , Receptores de Antígenos Quiméricos , Adulto , Antígenos CD19 , Humanos , Comportamento Imitativo , Imunoterapia Adotiva , Linfoma de Células B/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Linfócitos T
19.
Cancer Immunol Immunother ; 70(6): 1541-1555, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33201337

RESUMO

Adoptive cell transfer (ACT) using autologous tumor infiltrating lymphocytes (TILs) was previously shown to yield clinical response in metastatic melanoma patients as an advanced line. Unfortunately, there is no reliable marker for predicting who will benefit from the treatment. We analyzed TIL samples from the infusion bags used for treatment of 57 metastatic melanoma patients and compared their microRNA profiles. The discovery cohort included six responding patients and seven patients with progressive disease, as defined by RECIST1.1. High throughput analysis with NanoString nCounter demonstrated significantly higher levels of miR-34a-5p and miR-22-3p among TIL from non-responders. These results were validated in TIL infusion bag samples from an independent cohort of 44 patients, using qRT-PCR of the individual microRNAs. Using classification trees, a data-driven predictive model for response was built, based on the level of expression of these microRNAs. Patients that achieved stable disease were classified with responders, setting apart the patients with progressive disease. Moreover, the expression levels of miR-34a-5p in the infused TIL created distinct survival groups, which strongly supports its role as a potential biomarker for TIL-ACT therapy. Indeed, when tested against autologous melanoma cells, miRLow TIL cultures exhibited significantly higher cytotoxic activity than miRHigh TIL cultures, and expressed features of terminally exhausted effectors. Finally, overexpression of miR-34a-5p or miR-22-3p in TIL inhibited their cytotoxic ability in vitro. Overall, we show that a two-microRNA signature correlates with failure of TIL-ACT therapy and survival in melanoma patients.


Assuntos
Transferência Adotiva/métodos , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Melanoma/patologia , MicroRNAs/genética , Adulto , Idoso , Feminino , Seguimentos , Humanos , Masculino , Melanoma/genética , Melanoma/imunologia , Melanoma/terapia , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
20.
Am J Cancer Res ; 10(8): 2677-2686, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32905549

RESUMO

Melanoma cells utilize multiple mechanisms to exit the primary tumor mass, invade the surroundings and subsequently distant tissues. We have previously reported that the expression of the RNA editing enzyme ADAR1 (adenosine deaminase acting on RNA) is downregulated in metastatic melanoma, which facilitates proliferation and invasion. Here we show that ADAR1 controls melanoma invasiveness by regulating ITGB3 expression via miR-30a and miR-30d. ADAR1 overexpression or knockdown leads to an increase or decrease, respectively, in the expression of both microRNAs. The effect is independent of RNA-editing. Dual luciferase assays show that both microRNAs directly regulate the expression of the ITGB3 integrin. Overexpression of the miR-30a or miR-30d lead to a decrease in ITGB3 and a resultant decreased invasive and metastatic capacities. Neutralization of the endogenous miR-30a or miR-30d leads to the opposite effect. The microRNAs regulate ITGB3 levels probably through a post-transcriptional effect, as both mRNA and protein levels of ITGB3 are affected. These results further expand our knowledge on the ADAR1-ITGB3 network and its central role in acquisition of the invasive phenotype of metastatic melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...