Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Mol Bioeng ; 13(6): 605-619, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33281990

RESUMO

INTRODUCTION: Multicellular platforms and linked multi organ on chip devices are powerful tools for drug discovery, and basic mechanistic studies. Often, a critical constraint is defining a culture medium optimal for all cells present in the system. In this study, we focused on the key cells of the neuromuscular junction i.e., skeletal muscle and motor neurons. METHODS: Formulation of a chemically defined medium for the co-culture of C2C12 skeletal muscle cells and human induced pluripotent stem cell (hiPSC) derived spinal spheroids (SpS) was optimized. C2C12 cells in 10 experimental media conditions and 2 topographies were evaluated over a 14-day maturation period to determine the ideal medium formulation for skeletal muscle tissue development. RESULTS: During early maturation, overexpression of genes for myogenesis and myopathy was observed for several media conditions, corresponding to muscle delamination and death. Together, we identified 3 media formulations that allowed for more controlled differentiation, healthier muscle tissue, and long-term culture duration. This evidence was then used to select media formulations to culture SpS and subsequently assessed axonal growth. As axonal growth in SpS cultures was comparable in all selected media conditions, our data suggest that the neuronal basal medium with no added supplements is the ideal medium formulation for both cell types. CONCLUSIONS: Optimization using both topographical cues and culture media formulations provides a comprehensive analyses of culture conditions that are vital to future applications for in vitro NMJ models.

3.
Biomater Sci ; 8(2): 591-606, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31859298

RESUMO

We report a water-soluble and non-toxic method to incorporate additional extracellular matrix proteins into gelatin hydrogels, while obviating the use of chemical crosslinkers such as glutaraldehyde. Gelatin hydrogels were fabricated using a range of gelatin concentrations (4%-10%) that corresponded to elastic moduli of approximately 1 kPa-25 kPa, respectively, a substrate stiffness relevant for multiple cell types. Microbial transglutaminase was then used to enzymatically crosslink a layer of laminin on top of gelatin hydrogels, resulting in 2-component gelatin-laminin hydrogels. Human induced pluripotent stem cell derived spinal spheroids readily adhered and rapidly extended axons on GEL-LN hydrogels. Axons displayed a more mature morphology and superior electrophysiological properties on GEL-LN hydrogels compared to the controls. Schwann cells on GEL-LN hydrogels adhered and proliferated normally, displayed a healthy morphology, and maintained the expression of Schwann cell specific markers. Lastly, skeletal muscle cells on GEL-LN hydrogels achieved long-term culture for up to 28 days without delamination, while expressing higher levels of terminal genes including myosin heavy chain, MyoD, MuSK, and M-cadherin suggesting enhanced maturation potential and myotube formation compared to the controls. Future studies will employ the superior culture outcomes of this hybrid substrate for engineering functional neuromuscular junctions and related organ on a chip applications.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Gelatina/metabolismo , Hidrogéis/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Engenharia Tecidual , Transglutaminases/metabolismo , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Gelatina/química , Humanos , Hidrogéis/química , Fibras Musculares Esqueléticas/química , Esferoides Celulares/química , Esferoides Celulares/metabolismo , Transglutaminases/química
4.
J Neural Eng ; 15(2): 025004, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29303112

RESUMO

OBJECTIVE: Demyelination that results from disease or traumatic injury, such as spinal cord injury (SCI), can have a devastating effect on neural function and recovery. Many researchers are examining treatments to minimize demyelination by improving oligodendrocyte availability in vivo. Transplantation of stem and oligodendrocyte progenitor cells is a promising option, however, trials are plagued by undirected differentiation. Here we introduce a biomaterial that has been optimized to direct the differentiation of neural progenitor cells (NPCs) toward oligodendrocytes as a cell delivery vehicle after SCI. APPROACH: A collagen-based hydrogel was modified to mimic the mechanical properties of the neonatal spinal cord, and components present in the developing extracellular matrix were included to provide appropriate chemical cues to the NPCs to direct their differentiation toward oligodendrocytes. The hydrogel with cells was then transplanted into a unilateral cervical contusion model of SCI to examine the functional recovery with this treatment. Six behavioral tests and histological assessment were performed to examine the in vivo response to this treatment. MAIN RESULTS: Our results demonstrate that we can achieve a significant increase in oligodendrocyte differentiation of NPCs compared to standard culture conditions using a three-component biomaterial composed of collagen, hyaluronic acid, and laminin that has mechanical properties matched to those of neonatal neural tissue. Additionally, SCI rats with hydrogel transplants, with and without NPCs, showed functional recovery. Animals transplanted with hydrogels with NPCs showed significantly increased functional recovery over six weeks compared to the media control group. SIGNIFICANCE: The three-component hydrogel presented here has the potential to provide cues to direct differentiation in vivo to encourage regeneration of the central nervous system.


Assuntos
Biomimética/métodos , Diferenciação Celular/fisiologia , Hidrogéis/administração & dosagem , Células-Tronco Neurais/transplante , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/administração & dosagem , Colágeno/síntese química , Feminino , Hidrogéis/síntese química , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia
5.
Theranostics ; 8(1): 124-140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290797

RESUMO

Through the use of stem cell-derived cardiac myocytes, tissue-engineered human myocardial constructs are poised for modeling normal and diseased physiology of the heart, as well as discovery of novel drugs and therapeutic targets in a human relevant manner. This review highlights the recent bioengineering efforts to recapitulate microenvironmental cues to further the maturation state of newly differentiated cardiac myocytes. These techniques include long-term culture, co-culture, exposure to mechanical stimuli, 3D culture, cell-matrix interactions, and electrical stimulation. Each of these methods has produced various degrees of maturation; however, a standardized measure for cardiomyocyte maturation is not yet widely accepted by the scientific community.


Assuntos
Miócitos Cardíacos/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Humanos , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...