Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 291(2): 989-97, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26586915

RESUMO

To translate the 13 mtDNA-encoded mRNAs involved in oxidative phosphorylation (OXPHOS), mammalian mitochondria contain a dedicated set of ribosomes comprising rRNAs encoded by the mitochondrial genome and mitochondrial ribosomal proteins (MRPs) that are encoded by nuclear genes and imported into the matrix. In addition to their role in the ribosome, several MRPs have auxiliary functions or have been implicated in other cellular processes like cell cycle regulation and apoptosis. For example, we have shown that human MRPL12 binds and activates mitochondrial RNA polymerase (POLRMT), and hence has distinct functions in the ribosome and mtDNA transcription. Here we provide concrete evidence that there are two mature forms of mammalian MRPL12 that are generated by a two-step cleavage during import, involving efficient cleavage by mitochondrial processing protease and a second inefficient or regulated cleavage by mitochondrial intermediate protease. We also show that knock-down of MRPL12 by RNAi results in instability of POLRMT, but not other primary mitochondrial transcription components, and a corresponding decrease in mitochondrial transcription rates. Knock-down of MRPL10, the binding partner of MRPL12 in the ribosome, results in selective degradation of the mature long form of MRPL12, but has no effect on POLRMT. We propose that the two forms of MRPL12 are involved in homeostatic regulation of mitochondrial transcription and ribosome biogenesis that likely contribute to cell cycle, growth regulation, and longevity pathways to which MRPL12 has been linked.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Proteólise , Proteínas Ribossômicas/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Transporte Proteico , Proteínas Ribossômicas/química , Ribossomos/metabolismo , Transcrição Gênica
3.
Nature ; 520(7548): 553-7, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25642965

RESUMO

Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids. The abundant mtDNA-binding protein TFAM (transcription factor A, mitochondrial) regulates nucleoid architecture, abundance and segregation. Complete mtDNA depletion profoundly impairs oxidative phosphorylation, triggering calcium-dependent stress signalling and adaptive metabolic responses. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and ageing, remain poorly defined. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signalling to enhance the expression of a subset of interferon-stimulated genes. Mechanistically, we find that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS (also known as MB21D1) and promotes STING (also known as TMEM173)-IRF3-dependent signalling to elevate interferon-stimulated gene expression, potentiate type I interferon responses and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which enhances antiviral signalling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signalling and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully engage antiviral innate immunity.


Assuntos
DNA Mitocondrial/metabolismo , Herpesvirus Humano 1/imunologia , Imunidade Inata/imunologia , Estresse Fisiológico , Animais , Linhagem Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo
4.
Trends Biochem Sci ; 38(6): 283-91, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23632312

RESUMO

The human genome comprises large chromosomes in the nucleus and mitochondrial DNA (mtDNA) housed in the dynamic mitochondrial network. Human cells contain up to thousands of copies of the double-stranded, circular mtDNA molecule that encodes essential subunits of the oxidative phosphorylation complexes and the rRNAs and tRNAs needed to translate these in the organelle matrix. Transcription of human mtDNA is directed by a single-subunit RNA polymerase, POLRMT, which requires two primary transcription factors, TFB2M (transcription factor B2, mitochondrial) and TFAM (transcription factor A, mitochondrial), to achieve basal regulation of the system. Here, we review recent advances in understanding the structure and function of the primary human transcription machinery and the other factors that facilitate steps in transcription beyond initiation and provide more intricate control over the system.


Assuntos
DNA Mitocondrial/genética , Transcrição Gênica , Humanos
5.
Proc Natl Acad Sci U S A ; 109(17): 6513-8, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493245

RESUMO

Cell-based studies support the existence of two promoters on the heavy strand of mtDNA: heavy-strand promoter 1 (HSP1) and HSP2. However, transcription from HSP2 has been reported only once in a cell-free system, and never when recombinant proteins have been used. Here, we document transcription from HSP2 using an in vitro system of defined composition. An oligonucleotide template representing positions 596-685 of mtDNA was sufficient to observe transcription by the human mtRNA polymerase (POLRMT) that was absolutely dependent on mitochondrial transcription factor B2 (TFB2M). POLRMT/TFB2M-dependent transcription was inhibited by concentrations of mitochondrial transcription factor A (TFAM) stoichiometric with the transcription template, a condition that activates transcription from the light-strand promoter (LSP) in vitro. Domains of TFAM required for LSP activation were also required for HSP2 repression, whereas other mtDNA binding proteins failed to alter transcriptional output. Binding sites for TFAM were located on both sides of the start site of transcription from HSP2, suggesting that TFAM binding interferes with POLRMT and/or TFB2M binding. Consistent with a competitive binding model for TFAM repression of HSP2, the impact of TFAM concentration on HSP2 transcription was diminished by elevating the POLRMT and TFB2M concentrations. In the context of our previous studies of LSP and HSP1, it is now clear that three promoters exist in human mtDNA. Each promoter has a unique requirement for and/or response to the level of TFAM present, thus implying far greater complexity in the regulation of mammalian mitochondrial transcription than recognized to date.


Assuntos
DNA Mitocondrial/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Sequência de Bases , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Choque Térmico/metabolismo , Humanos , Técnicas In Vitro , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
6.
Nucleic Acids Res ; 40(2): 614-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21948790

RESUMO

Mitochondrial transcription factor A (mtTFA/TFAM) is a nucleus-encoded, high-mobility-group-box (HMG-box) protein that regulates transcription of the mitochondrial genome by specifically recognizing light-strand and heavy-strand promoters (LSP, HSP1). TFAM also binds mitochondrial DNA in a non-sequence specific (NSS) fashion and facilitates its packaging into nucleoid structures. However, the requirement and contribution of DNA-bending for these two different binding modes has not been addressed in detail, which prompted this comparison of binding and bending properties of TFAM on promoter and non-promoter DNA. Promoter DNA increased the stability of TFAM to a greater degree than non-promoter DNA. However, the thermodynamic properties of DNA binding for TFAM with promoter and non-specific (NS) DNA were similar to each other and to other NSS HMG-box proteins. Fluorescence resonance energy transfer assays showed that TFAM bends promoter DNA to a greater degree than NS DNA. In contrast, TFAM lacking the C-terminal tail distorted both promoter and non-promoter DNA to a significantly reduced degree, corresponding with markedly decreased transcriptional activation capacity at LSP and HSP1 in vitro. Thus, the enhanced bending of promoter DNA imparted by the C-terminal tail is a critical component of the ability of TFAM to activate promoter-specific initiation by the core mitochondrial transcription machinery.


Assuntos
DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Ativação Transcricional , Sequência de Bases , DNA Mitocondrial/química , Proteínas de Ligação a DNA/genética , Entropia , Humanos , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Estabilidade Proteica , Fatores de Transcrição/genética
7.
J Biol Chem ; 286(48): 41253-41264, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21971050

RESUMO

Impaired oxidative phosphorylation (OXPHOS) is implicated in several metabolic disorders. Even though mitochondrial DNA encodes several subunits critical for OXPHOS, the metabolic consequence of activating mitochondrial transcription remains unclear. We show here that LRP130, a protein involved in Leigh syndrome, increases hepatic ß-fatty acid oxidation. Using convergent genetic and biochemical approaches, we demonstrate LRP130 complexes with the mitochondrial RNA polymerase to activate mitochondrial transcription. Activation of mitochondrial transcription is associated with increased OXPHOS activity, increased supercomplexes, and denser cristae, independent of mitochondrial biogenesis. Consistent with increased oxidative phosphorylation, ATP levels are increased in both cells and mouse liver, whereas coupled respiration is increased in cells. We propose activation of mitochondrial transcription remodels mitochondria and enhances oxidative metabolism.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Fosforilação Oxidativa , Animais , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Ácidos Graxos/genética , Células Hep G2 , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Camundongos , Mitocôndrias Hepáticas/genética , Proteínas Mitocondriais/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Oxirredução , Consumo de Oxigênio/fisiologia , Transcrição Gênica/fisiologia
8.
Transcription ; 2(2): 55-59, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21468229

RESUMO

We recently demonstrated that the core transcription initiation complex in human mitochondria is a two-component system (POLRMT and h-mtTFB2). Human mtTFA/TFAM, previously proposed to be a requisite initiation complex member, is dispensable for promoter-specific initiation in vitro. We propose that it instead regulates relative promoter activity and/or overall nucleoid transcription and replication potential.

9.
Mol Cell Biol ; 30(18): 4480-91, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20624914

RESUMO

Three missense SURF1 mutations identified in patients with Leigh syndrome (LS) were evaluated in the yeast homolog Shy1 protein. Introduction of two of the Leigh mutations, F(249)T and Y(344)D, in Shy1 failed to significantly attenuate the function of Shy1 in cytochrome c oxidase (CcO) biogenesis as seen with the human mutations. In contrast, a G(137)E substitution in Shy1 results in a nonfunctional protein conferring a CcO deficiency. The G(137)E Shy1 mutant phenocopied shy1Delta cells in impaired Cox1 hemylation and low mitochondrial copper. A genetic screen for allele-specific suppressors of the G(137)E Shy1 mutant revealed Coa2, Cox10, and a novel factor designated Coa4. Coa2 and Cox10 are previously characterized CcO assembly factors. Coa4 is a twin CX(9)C motif mitochondrial protein localized in the intermembrane space and associated with the inner membrane. Cells lacking Coa4 are depressed in CcO activity but show no impairment in Cox1 maturation or formation of the Shy1-stabilized Cox1 assembly intermediate. To glean insights into the functional role of Coa4 in CcO biogenesis, an unbiased suppressor screen of coa4Delta cells was conducted. Respiratory function of coa4Delta cells was restored by the overexpression of CYC1 encoding cytochrome c. Cyc1 is known to be important at an ill-defined step in the assembly and/or stability of CcO. This new link to Coa4 may begin to further elucidate the role of Cyc1 in CcO biogenesis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Doença de Leigh/genética , Proteínas de Membrana , Proteínas Mitocondriais , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Respiração Celular/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Biossíntese de Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
10.
Mol Cell Biol ; 30(1): 172-85, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19841065

RESUMO

Saccharomyces cerevisiae cells lacking the cytochrome c oxidase (CcO) assembly factor Coa2 are impaired in Cox1 maturation and exhibit a rapid degradation of newly synthesized Cox1. The respiratory deficiency of coa2 Delta cells is suppressed either by the presence of a mutant allele of the Cox10 farnesyl transferase involved in heme a biosynthesis or through impaired proteolysis by the disruption of the mitochondrial Oma1 protease. Cox10 with an N196K substitution functions as a robust gain-of-function suppressor of the respiratory deficiency of coa2 Delta cells but lacks suppressor activity for two other CcO assembly mutant strains, the coa1 Delta and shy1 Delta mutants. The suppressor activity of N196K mutant Cox10 is dependent on its catalytic function and the presence of Cox15, the second enzyme involved in heme a biosynthesis. Varying the substitution at Asn196 reveals a correlation between the suppressor activity and the stabilization of the high-mass homo-oligomeric Cox10 complex. We postulate that the mutant Cox10 complex has enhanced efficiency in the addition of heme a to Cox1. Coa2 appears to impart stability to the oligomeric wild-type Cox10 complex involved in Cox1 hemylation.


Assuntos
Alquil e Aril Transferases/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/análogos & derivados , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Alquil e Aril Transferases/genética , Catálise , Complexo IV da Cadeia de Transporte de Elétrons/genética , Heme/metabolismo , Proteínas de Membrana/genética , Metaloproteases/genética , Metaloproteases/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Cell Biol ; 30(4): 1004-17, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19995914

RESUMO

The biogenesis of cytochrome c oxidase initiates with synthesis and maturation of the mitochondrion-encoded Cox1 subunit prior to the addition of other subunits. Cox1 contains redox cofactors, including the low-spin heme a center and the heterobimetallic heme a(3):Cu(B) center. We sought to identify the step in the maturation of Cox1 in which the redox cofactor centers are assembled. Newly synthesized Cox1 is incorporated within one early assembly intermediate containing Mss51 in Saccharomyces cerevisiae. Subsequent Cox1 maturation involves the progression to downstream assembly intermediates involving Coa1 and Shy1. We show that the two heme a cofactor sites in Cox1 form downstream of Mss51- and Coa1-containing Cox1 intermediates. These Cox1 intermediates form normally in cells defective in heme a biosynthesis or in cox1 mutant strains with heme a axial His mutations. In contrast, the Shy1-containing Cox1 assembly intermediate is perturbed in the absence of heme a. Heme a(3) center formation in Cox1 appears to be chaperoned by Shy1. Cu(B) site formation occurs near or at the Shy1-containing Cox1 assembly intermediate also. The Cu(B) metallochaperone Cox11 transiently interacts with Shy1 by coimmunoprecipitation. The Shy1-containing Cox1 complex is markedly attenuated in cells lacking Cox11 but is partially restored with a nonfunctional Cox11 mutant. Thus, formation of the heterobimetallic Cu(B):heme a(3) site likely occurs in the Shy1-containing Cox1 complex.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Heme/análogos & derivados , Heme/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredução , Ligação Proteica , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Mol Cell Biol ; 28(16): 4927-39, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18541668

RESUMO

The assembly of cytochrome c oxidase (CcO) in yeast mitochondria is dependent on a new assembly factor designated Coa2. Coa2 was identified from its ability to suppress the respiratory deficiency of coa1Delta and shy1Delta cells. Coa1 and Shy1 function at an early step in maturation of the Cox1 subunit of CcO. Coa2 functions downstream of the Mss51-Coa1 step in Cox1 maturation and likely concurrent with the Shy1-related heme a(3) insertion into Cox1. Coa2 interacts with Shy1. Cells lacking Coa2 show a rapid degradation of newly synthesized Cox1. Rapid Cox1 proteolysis also occurs in shy1Delta cells, suggesting that in the absence of Coa2 or Shy1, Cox1 forms an unstable conformer. Overexpression of Cox10 or Cox5a and Cox6 or attenuation of the proteolytic activity of the m-AAA protease partially restores respiration in coa2Delta cells. The matrix-localized Coa2 protein may aid in stabilizing an early Cox1 intermediate containing the nuclear subunits Cox5a and Cox6.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Deleção de Genes , Teste de Complementação Genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/biossíntese , Solubilidade , Supressão Genética , Termodinâmica
14.
EMBO J ; 26(20): 4335-46, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17882260

RESUMO

The assembly of cytochrome c oxidase (CcO) in yeast mitochondria is shown to be dependent on a new assembly factor designated Coa1 that associates with the mitochondrial inner membrane. Translation of the mitochondrial-encoded subunits of CcO occurs normally in coa1Delta cells, but these subunits fail to accumulate. The respiratory defect in coa1Delta cells is suppressed by high-copy MSS51, MDJ1 and COX10. Mss51 functions in Cox1 translation and elongation, whereas Cox10 participates in the biosynthesis of heme a, a key cofactor of CcO. Respiration in coa1Delta and shy1Delta cells is enhanced when Mss51 and Cox10 are coexpressed. Shy1 has been implicated in formation of the heme a3-Cu(B) site in Cox1. The interaction between Coa1 and Cox1, and the physical and genetic interactions between Coa1 and Mss51, Shy1 and Cox14 suggest that Coa1 coordinates the transition of newly synthesized Cox1 from the Mss51:Cox14 complex to the heme a cofactor insertion involving Shy1. coa1Delta cells also display a mitochondrial copper defect suggesting that Coa1 may have a direct link to copper metallation of CcO.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/fisiologia , Cobre/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Heme/química , Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Modelos Biológicos , Proteínas Nucleares/fisiologia , Consumo de Oxigênio , Ligação Proteica , Biossíntese de Proteínas
15.
J Biol Chem ; 281(48): 36552-9, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17008312

RESUMO

A mitochondrial matrix copper ligand (CuL) complex, conserved in mammalian cells, is the likely source of copper for assembly of cytochrome c oxidase (CcO) and superoxide dismutase 1 (Sod1) within the intermembrane space (IMS) in yeast. Targeting the copper-binding proteins human Sod1 and Crs5 to the mitochondrial matrix results in growth impairment on non-fermentable medium caused by decreased levels of CcO. This effect is reversed by copper supplementation. Matrix-targeted Crs5 diminished Sod1 protein within the IMS and impaired activity of an inner membrane tethered human Sod1. Copper binding by the matrix-targeted proteins attenuates levels of the CuL complex without affecting total mitochondrial copper. These data suggest that attenuation of the matrix CuL complex via heterologous competitors limits available copper for metallation of CcO and Sod1 within the IMS. The ligand also exists in the cytoplasm in an apparent metal-free state.


Assuntos
Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo , Transporte Biológico , Cobre/química , Citoplasma/metabolismo , Teste de Complementação Genética , Glicerol/química , Humanos , Ligantes , Metalotioneína/metabolismo , Mitocôndrias/enzimologia , Chaperonas Moleculares , Estresse Oxidativo , Fenótipo , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...