Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948408

RESUMO

Leishmaniasis is a disease caused by parasites of the Leishmania genus that affects 98 countries worldwide, 2 million of new cases occur each year and more than 350 million people are at risk. The use of the actual treatments is limited due to toxicity concerns and the apparition of resistance strains. Therefore, there is an urgent necessity to find new drugs for the treatment of this disease. In this context, enzymes from the polyamine biosynthesis pathway, such as arginase, have been considered a good target. In the present work, a chemical library of benzimidazole derivatives was studied performing computational, enzyme kinetics, biological activity, and cytotoxic effect characterization, as well as in silico ADME-Tox predictions, to find new inhibitors for arginase from Leishmania mexicana (LmARG). The results show that the two most potent inhibitors (compounds 1 and 2) have an I50 values of 52 µM and 82 µM, respectively. Moreover, assays with human arginase 1 (HsARG) show that both compounds are selective for LmARG. According to molecular dynamics simulation studies these inhibitors interact with important residues for enzyme catalysis. Biological activity assays demonstrate that both compounds have activity against promastigote and amastigote, and low cytotoxic effect in murine macrophages. Finally, in silico prediction of their ADME-Tox properties suggest that these inhibitors support the characteristics to be considered drug candidates. Altogether, the results reported in our study suggest that the benzimidazole derivatives are an excellent starting point for design new drugs against leishmanisis.


Assuntos
Antiprotozoários/farmacologia , Arginase/antagonistas & inibidores , Benzimidazóis/farmacologia , Leishmania mexicana/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antiprotozoários/química , Arginase/metabolismo , Benzimidazóis/química , Linhagem Celular , Descoberta de Drogas , Humanos , Leishmania mexicana/enzimologia , Leishmania mexicana/fisiologia , Leishmaniose Cutânea/tratamento farmacológico , Camundongos , Modelos Moleculares , Proteínas de Protozoários/metabolismo
2.
J Biomol Struct Dyn ; 37(16): 4301-4311, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30477412

RESUMO

Protein kinase B also known as AKT is a cardinal node in different signaling pathways that regulates diverse cell processes. AKT has three isoforms that share high homology. Hyperactivation of each isoform is related with different types of cancer. This work describes the computational search for new inhibitors using a hit optimization process of the previously reported AKT pan inhibitor, a 2,4,6-trisubstituted pyridine. A database of new molecules was proposed using a variant of fragment-based docking methodology and previous reported considerations. Molecular docking followed by molecular dynamics studies were performed to select the best compounds and analyze their behavior. Protein-ligand complexes energy was calculated using molecular mechanics Poisson-Boltzmann surface area protocol. Further, proposed molecules were compared with the ChEMBL database of compounds assayed against AKT. Data analysis leads to determine the structural requirements necessary for a favorable interaction of the proposed ligands with the AKT pocket. Molecular dynamics data suggested that the pKa of the ligands is important for the stability in the AKT pocket. Molecular similarity analysis shows that proposed ligands have not been previously reported. Thus, ligands with high docking scores and favorable behavior on molecular dynamics simulations are proposed as potential AKT inhibitors.


Assuntos
Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/química , Termodinâmica , Sítios de Ligação/efeitos dos fármacos , Simulação por Computador , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Neoplasias/genética , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
3.
Curr Protein Pept Sci ; 17(3): 260-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26983887

RESUMO

Malaria is one of the main infectious diseases in tropical developing countries and represents high morbidity and mortality rates nowadays. The principal etiological agent P. falciparum is transmitted through the bite of the female Anopheles mosquito. The issue has escalated due to the emergence of resistant strains to most of the antimalarials used for the treatment including Chloroquine, Sulfadoxine-Pyrimethamine, and recently Artemisinin derivatives, which has led to diminished effectiveness and by consequence increased the severity of epidemic outbreaks. Due to the lack of effective compounds to treat these drug-resistant strains, the discovery or development of novel anti-malaria drugs is important. In this context, one strategy has been to find inhibitors of enzymes, which play an important role for parasite survival. Today, promising results have been obtained in this regard, involving the entire P. falciparum metabolism. These inhibitors could serve as leads in the search of a new chemotherapy against malaria. This review focuses on the achievements in recent years with regard to inhibition of enzymes used as targets for drug design against malaria.


Assuntos
Antimaláricos/farmacologia , Desenho de Fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Animais , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Plasmodium falciparum/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA