Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 234: 116587, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423355

RESUMO

The outstanding properties of nanofiber composites have made them a popular choice for various structural applications. Recently, there has been a growing interest in using electrospun nanofibers as reinforcement agents, which possess exceptional properties that can enhance the performance of these composites. Herein, TiO2-graphene oxide (GO) nanocomposite incorporated into polyacrylonitrile (PAN)/cellulose acetate (CA) nanofibers were fabricated by an effortless electrospinning technique. The chemical and structural characteristics of the resulting electrospun TiO2-GO nanofibers were examined employing diverse techniques such as XRD, FTIR, XPS, TGA, mechanical properties, and FESEM. Remediation of organic contaminants and organic transformation reactions with electrospun TiO2-GO nanofibers were performed. The results indicated that the incorporation of TiO2-GO with various TiO2/GO ratios did not affect the molecular structure of PAN-CA. Still, they did significantly increase the mean fiber diameter (234-467 nm) and the mechanical properties of the nanofibers comprising UTS, elongation, Young's modulus, and toughness compared to PAN-CA. From various ratios of TiO2/GO (0.01TiO2/0.005GO and 0.005TiO2/0.01GO) in the electrospun NFs, the nanofiber containing a high content of TiO2 showed over 97% of the initial MB dyes were degraded after 120 min of visible light exposure and the same nanofibers also, achieved 96% nitrophenol conversion to aminophenol in just 10 min with activity factor kAF value of 47.7 g-1min-1. These findings illustrate the promise of TiO2-GO/PAN-CA nanofibers for use in various structural applications, particularly in the remediation of organic contaminants from water and organic transformation reactions.


Assuntos
Nanofibras , Nitrofenóis
2.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049835

RESUMO

Tailoring high-efficiency photocatalytic composites for various implementations is a major research topic. 1D TNTs-based nanomaterials show promise as a photocatalyst for the remediation of organic pigments in an aqueous solution. Despite this, TiO2 (TNTs) is only photoactive in the UV range due to its inherent restriction on absorption of light in the UV range. Herein, we provide a facile recipe to tailor the optical characteristics and photocatalytic activity of TNTs by incorporating Zn (II) ionic species via an ion-exchange approach in an aqueous solution. The inclusion of Zn (II) ions into the TNTs framework expands its absorption of light toward the visible light range, therefore TiO2 nanotubes shows the visible-light photo-performance. Activity performance on photocatalytic decontamination of RhB at ambient temperature demonstrates that Zn-TNTs offer considerable boosted catalytic performance compared with untreated tubular TiO2 during the illumination of visible light. RhB (10 mg L-1) degradation of around 95% was achieved at 120 min. Radical scavenger experiment demonstrated that when electron (e-) or holes (h+) scavengers are introduced to the photodegradation process, the assessment of decontamination efficacy decreased by 45% and 76%, respectively. This demonstrates a more efficient engagement of the photoexcited electrons over photogenerated holes in the photodegradation mechanism. Furthermore, there seems to be no significant decrease in the activity of the Zn-TNTs after five consecutive runs. As a result, the fabricated Zn-TNTs composite has a high economic potential in the energy and environmental domains.

3.
Int J Biol Macromol ; 164: 1342-1369, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726651

RESUMO

Chitosan is an important biopolymer produced from the deacetylation of several seas and insect crusts. Due to its environmental fate and biological biocompatibility, it can be used in several biological and environmental applications. In this review, the potential application of chitosan biopolymer was reviewed due to it is considered an environmental, sustainable, and biologically safe plate form for producing several antioxidants. The different antioxidants fabricated from chitosan biopolymer- an active substrate- and the functional role of the diverse groups, either in chitosan backbone or in the coupled species with chitosan, were reviewed. Different antioxidant types were described, reviewed, and compared with the most famous and traditional antioxidants, such as ascorbic acid, citric acid, and gallic acid. Additionally, the different methods and techniques used in determining the antioxidative tendencies of the antioxidants were extensively described and reviewed.


Assuntos
Antioxidantes/química , Biopolímeros/química , Quitosana/análogos & derivados , Quitosana/química , Animais , Ácido Ascórbico/química , Compostos de Bifenilo/química , Quelantes/química , Ácido Cítrico/química , Sequestradores de Radicais Livres/química , Ácido Gálico/química , Radical Hidroxila , Metais/química , Ácido Peroxinitroso/química , Fenóis/química , Picratos/química , Polifenóis/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Environ Manage ; 258: 110043, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929075

RESUMO

Two types of chitosan-based composites (chitosan/ZnO and chitosan/Ce-ZnO composites) were synthesized under microwave irradiation and characterized as advanced catalysts of enhanced photocatalytic activity under the visible light. The morphological investigation reflected the formation of ZnO and Ce doped ZnO at stunning micro flowers of nano limps. Additionally, the optical studies reflected a reduction in the bandgap of ZnO from 3.3 eV to 2.85 eV and 2.5 eV after supporting it onto chitosan chains and after doping it with cerium, respectively. The synthetic composites were applied in photocatalytic removal of malachite green dye under a visible light source. The synthetic CH/ZnO and CH/Ce-ZnO showed enhancement in the photocatalytic removal of M.G by 54% and 87%, respectively, as compared to the pure ZnO. The synthetic composites are of high stability and can be reused for five photocatalytic degradation cycles at stunning removal percentages. The main oxidizing radicals during the removal of M.G by CH/ZnO are the generated electron-hole pairs as well as the hydroxyl radicals. The effective species in CH/Ce-ZnO photocatalytic system are the photogenerated hydroxyl radicals followed by the electron-hole pairs.


Assuntos
Quitosana , Óxido de Zinco , Flores , Luz , Corantes de Rosanilina
5.
J Colloid Interface Sci ; 555: 31-41, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377646

RESUMO

Ni-doped and Ni/Cr co-doped TiO2 nanotubes were successfully synthesized using a novel hydrothermal method. The surface and bulk properties of as-synthesized nanopowders were characterized using various microstructural and optical techniques. The photocatalytic ability of these nanopowders was investigated systematically for the decomposition of methylene blue dye (MB) under visible light illumination. The morphological results revealed the structural transformation of TiO2 nanotubes to nanosheets, and further to a mixture of nanosheet/nanotube on doping with Ni and co-doping of Ni/Cr, respectively. Moreover, the Ni doping causes an optical absorption edge shifts towards lower wavelengths, while doping by Ni/Cr results to an optical absorption edge shifts towards higher wavelength in comparison to TiO2-nanotubes. Also, Ni-doping and Ni/Cr co-doping strongly affects the Raman vibrational modes owing to the changes in interplanar distance, crystallite size, dislocation density, and crystal microstrains. Among the undoped, doped and co-doped TiO2 nanoparticles, the 6Ni/4Cr co-doped TiO2 exhibited a higher efficiency of 95.6% and excellent stability towards the photocatalytic degradation of MB. It is attributed to the availability of many carriers for the efficient photo-oxidation within the UV-Vis optical absorption range. Also, the photocatalytic reaction kinetics and degradation mechanism of MB were discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...