Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(5): e0404823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38606959

RESUMO

Phytoplankton are important drivers of aquatic ecosystem function and environmental health. Their community compositions and distributions are directly impacted by environmental processes and human activities, including in the largest estuary in North America, the Chesapeake Bay. It is crucial to uncover how planktonic eukaryotes play fundamental roles as primary producers and trophic links and sustain estuarine ecosystems. In this study, we investigated the detailed community structure and spatiotemporal variations of planktonic eukaryotes in the Chesapeake Bay across space and time for three consecutive years. A clear seasonal and spatial shift of total, abundant, and rare planktonic eukaryotes was evident, and the pattern recurred interannually. Multiple harmful algal species have been identified in the Bay with varied distribution patterns, such as Karlodinium, Heterosigma akashiwo, Protoperidinium sp., etc. Compared to abundant taxa, rare subcommunities were more sensitive to environmental disturbance in terms of richness, diversity, and distribution. The combined effects of temporal variation (13.3%), nutrient availability (10.0%), and spatial gradients (8.8%) structured the distribution of eukaryotic microbial communities in the Bay. Similar spatiotemporal patterns between planktonic prokaryotes and eukaryotes suggest common mechanisms of adjustment, replacement, and species interaction for planktonic microbiomes under strong estuarine gradients. To our best knowledge, this work represents the first systematic study on planktonic eukaryotes in the Bay. A comprehensive view of the distribution of planktonic microbiomes and their interactions with environmental processes is critical in understanding the underlying microbial mechanisms involved in maintaining the stability, function, and environmental health of estuarine ecosystems. IMPORTANCE: Deep sequencing analysis of planktonic eukaryotes in the Chesapeake Bay reveals high community diversity with many newly recognized phytoplankton taxa. The Chesapeake Bay planktonic eukaryotes show distinct seasonal and spatial variability, with recurring annual patterns of total, abundant, and rare groups. Rare taxa mainly contribute to eukaryotic diversity compared to abundant groups, and they are more sensitive to spatiotemporal variations and environmental filtering. Temporal variations, nutrient availability, and spatial gradients significantly affect the distribution of eukaryotic microbial communities. Similar spatiotemporal patterns in prokaryotes and eukaryotes suggest common mechanisms of adjustment, substitution, and species interactions in planktonic microbiomes under strong estuarine gradients. Interannually recurring patterns demonstrate that diverse eukaryotic taxa have well adapted to the estuarine environment with a long residence time. Further investigations of how human activities impact estuarine planktonic eukaryotes are critical in understanding their essential ecosystem roles and in maintaining environmental safety and public health.


Assuntos
Baías , Estuários , Eucariotos , Fitoplâncton , Baías/microbiologia , Eucariotos/classificação , Eucariotos/genética , Fitoplâncton/classificação , Fitoplâncton/genética , Plâncton/classificação , Plâncton/genética , Ecossistema , Biodiversidade , Estações do Ano
2.
Mar Pollut Bull ; 194(Pt B): 115267, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487429

RESUMO

Macroplastics are ubiquitous in aquaculture ecosystems. However, to date the potential role of plastics as a support for bacterial biofilm that can include potential human pathogenic bacteria (PHPB) and antibiotic-resistant bacteria (ARB) has been largely overlooked. In this study, we used a combination of metabarcoding and standard antibiotic susceptibility testing to study the pathobiome and resistome of macroplastics, fish guts and the environment in a marine aquaculture farm in Mauritius. Aquaculture macroplastics were found to be higher in PHPB, dominated by the Vibrionaceae family (0.34 % of the total community), compared with environmental samples. Moreover, isolates from aquaculture plastics showed higher significant multiple antibiotic resistance (MAR) compared to non-plastic samples of seawater, sediment and fish guts. These results suggest that plastics act as a reservoir and fomite of PHPB and ARB in aquaculture, potentially threatening the health of farmed fish and human consumers.


Assuntos
Antibacterianos , Pesqueiros , Animais , Humanos , Antibacterianos/farmacologia , Antagonistas de Receptores de Angiotensina , Ecossistema , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos , Bactérias , Aquicultura , Peixes
3.
Environ Microbiol ; 25(11): 2368-2387, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431274

RESUMO

Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.


Assuntos
Ecossistema , Vírus , Humanos , Viroma , Vírus/genética , Água , DNA
4.
J Microbiol ; 61(6): 589-602, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37261715

RESUMO

The disposal of sewage in significant quantities poses a health hazard to aquatic ecosystems. These effluents can contain a wide range of pathogens, making faecal contamination a leading source of waterborne diseases around the world. Yet monitoring bacteria or viruses in aquatic environments is time consuming and expensive. The standard indicators of faecal pollution all have limitations, including difficulty in determining the source due to lack of host specificity, poor connection with the presence of non-bacterial pathogens, or low environmental persistence. Innovative monitoring techniques are sorely needed to provide more accurate and targeted solutions. Viruses are a promising alternative to faecal indicator bacteria for monitoring, as they are more persistent in ambient water, more abundant in faeces, and are extremely host-specific. Given the range of viruses found in diverse contexts, it is not easy to find one "ideal" viral indicator of faecal pollution; however, several are of interest. In parallel, the ongoing development of molecular techniques coupled with metagenomics and bioinformatics should enable improved ways to detect faecal contamination using viruses. This review examines the evolution of faecal contamination monitoring with the following aims (i) to identify the characteristics of the main viral indicators of faecal contamination, including human enteric viruses, bacteriophages, CRESS and plant viruses, (ii) to assess how these have been used to monitor water pollution in recent years, (iii) to evaluate the reliability of recent detection methods of such viruses, and (iv) to tentatively determine which viruses may be most effective as markers of faecal pollution.


Assuntos
Bacteriófagos , Vírus , Humanos , Ecossistema , Reprodutibilidade dos Testes , Microbiologia da Água , Bacteriófagos/genética , Vírus/genética , Bactérias , Fezes/microbiologia , Monitoramento Ambiental/métodos
5.
Data Brief ; 47: 108977, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36860407

RESUMO

Acropora is one of the most common coral genera found in Phu Quoc Islands, Vietnam. However, the presence of marine snails, such as the coralllivorous gastropod Drupella rugosa, was a potential threat to the survival of many scleractinian species, leading to changes in the health status and bacterial diversity of coral reefs in Phu Quoc Islands. Here, we describe the composition of bacterial communities associated with two species of Acropora (Acropora formosa and Acropora millepora) using the Illumina sequencing technology. This dataset includes 5 coral samples of each status (grazed or healthy), which were collected in Phu Quoc Islands (9°55'20.6″N 104°01'16.4″E) in May 2020. A total of 19 phyla, 34 classes, 98 orders, 216 families and 364 bacterial genera were detected from 10 coral samples. Overall, Proteobacteria and Firmicutes were the two most common bacterial phyla in all samples. Significant differences in the relative abundances of the genera Fusibacter, Halarcobacter, Malaciobacter, and Thalassotalea between grazed and healthy status were observed. However, there was no differences in alpha diversity indices between the two status. Furthermore, the dataset analysis also indicated that Vibrio and Fusibacter were core genera in the grazed samples, whereas Pseudomonas was the core genus in the healthy samples.

6.
Microb Ecol ; 86(1): 742-755, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35962839

RESUMO

Although tunas represent a significant part of the global fish economy and a major nutritional resource worldwide, their microbiome still remains poorly documented. Here, we conducted an analysis of the taxonomic composition of the bacterial communities inhabiting the gut, skin, and liver of two most consumed tropical tuna species (skipjack and yellowfin), from individuals caught in the Atlantic and Indian oceans. We hypothesized that each organ harbors a specific microbial assemblage whose composition might vary according to different biotic (sex, species) and/or abiotic (environmental) factors. Our results revealed that the composition of the tuna microbiome was totally independent of fish sex, regardless of the species and ocean considered. Instead, the main determinants of observed diversity were (i) tuna species for the gut and (ii) sampling site for the skin mucus layer and (iii) a combination of both parameters for the liver. Interestingly, 4.5% of all amplicon sequence variants (ASV) were shared by the three organs, highlighting the presence of a core-microbiota whose most abundant representatives belonged to the genera Mycoplasma, Cutibacterium, and Photobacterium. Our study also revealed the presence of a unique and diversified bacterial assemblage within the tuna liver, comprising a substantial proportion of potential histamine-producing bacteria, well known for their pathogenicity and their contribution to fish poisoning cases. These results indicate that this organ is an unexplored microbial niche whose role in the health of both the host and consumers remains to be elucidated.


Assuntos
Microbiota , Atum , Animais , Atum/microbiologia , Caça , Histamina , Bactérias/genética
7.
FEMS Microbiol Lett ; 369(1)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36104149

RESUMO

Ecological traits of aquatic microorganisms have been poorly investigated in tropical latitudes, especially in lagoons, which are often subjected to strong anthropogenic influence, conducive to microbial development. In this study, we examined the abundance of both viral and bacterial communities, as well as their interactions (lytic and lysogenic infections) in the water and sediment of seven main stations of the Ebrié Lagoon (Ivory Coast) with contrasting levels of eutrophication. The highest bacterial and viral concentrations in both planktonic and benthic samples were found in the most eutrophicated stations, where viral lytic infections also exhibited their highest values. Conversely, the highest fractions of inducible lysogens were measured in the most oligotrophic stations, suggesting that these two main viral life strategies are mutually exclusive in this lagoon. Our findings also revealed the importance that nutrients (especially ammonium) play as drivers of the interactions between viruses and their bacterial hosts in tropical lagoons.


Assuntos
Compostos de Amônio , Vírus , Bactérias , Eutrofização , Água
8.
FEMS Microbiol Ecol ; 98(10)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36124730

RESUMO

Like other seafood products, tuna is highly perishable and sensitive to microbial spoilage. Its consumption, whether fresh or canned, can lead to severe food poisoning due to the activity of specific microorganisms, including histamine-producing bacteria. Yet, many grey areas persist regarding their ecology, conditions of emergence, and proliferation in fish. In this study, we used 16S rRNA barcoding to investigate postmortem changes in the bacteriome of fresh and brine-frozen yellowfin tuna (Thunnus albacares), until late stages of decomposition (i.e. 120 h). The results revealed that despite standard refrigeration storage conditions (i.e. 4°C), a diverse and complex spoilage bacteriome developed in the gut and liver. The relative abundance of spoilage bacterial taxa increased rapidly in both organs, representing 82% of the bacterial communities in fresh yellowfin tuna, and less than 30% in brine-frozen tuna. Photobacterium was identified as one of the dominant bacterial genera, and its temporal dynamics were positively correlated with histamine concentration in both gut and liver samples, which ultimately exceeded the recommended sanitary threshold of 50 ppm in edible parts of tuna. The results from this study show that the sanitary risks associated with the consumption of this widely eaten fish are strongly influenced by postcapture storage conditions.


Assuntos
Microbiota , Atum , Animais , Bactérias/genética , Microbiologia de Alimentos , Histamina/análise , Microbiota/genética , RNA Ribossômico 16S/genética , Sais , Atum/genética , Atum/microbiologia
9.
Viruses ; 15(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36680116

RESUMO

Metagenomics studies have revealed tremendous viral diversity in aquatic environments. Yet, while the genomic data they have provided is extensive, it is unannotated. For example, most phage sequences lack accurate information about their bacterial host, which prevents reliable phage identification and the investigation of phage-host interactions. This study aimed to take this knowledge further, using a viral metagenomic framework to decipher the composition and diversity of phage communities and to predict their bacterial hosts. To this end, we used water and sediment samples collected from seven sites with varying contamination levels in the Ebrié Lagoon in Abidjan, Ivory Coast. The bacterial communities were characterized using the 16S rRNA metabarcoding approach, and a framework was developed to investigate the virome datasets that: (1) identified phage contigs with VirSorter and VIBRANT; (2) classified these contigs with MetaPhinder using the phage database (taxonomic annotation); and (3) predicted the phages' bacterial hosts with a machine learning-based tool: the Prokaryotic Virus-Host Predictor. The findings showed that the taxonomic profiles of phages and bacteria were specific to sediment or water samples. Phage sequences assigned to the Microviridae family were widespread in sediment samples, whereas phage sequences assigned to the Siphoviridae, Myoviridae and Podoviridae families were predominant in water samples. In terms of bacterial communities, the phyla Latescibacteria, Zixibacteria, Bacteroidetes, Acidobacteria, Calditrichaeota, Gemmatimonadetes, Cyanobacteria and Patescibacteria were most widespread in sediment samples, while the phyla Epsilonbacteraeota, Tenericutes, Margulisbacteria, Proteobacteria, Actinobacteria, Planctomycetes and Marinimicrobia were most prevalent in water samples. Significantly, the relative abundance of bacterial communities (at major phylum level) estimated by 16S rRNA metabarcoding and phage-host prediction were significantly similar. These results demonstrate the reliability of this novel approach for predicting the bacterial hosts of phages from shotgun metagenomic sequencing data.


Assuntos
Bactérias , Bacteriófagos , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Côte d'Ivoire , Genes de RNAr , Metagenômica/métodos , Reprodutibilidade dos Testes , RNA Ribossômico 16S/genética , Água
10.
Viruses ; 13(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34372497

RESUMO

While planktonic viruses have received much attention in recent decades, knowledge of the virome of marine organisms, especially fish, still remains rudimentary. This is notably the case with tuna, which are among the most consumed fish worldwide and represent considerable economic, social and nutritional value. Yet the composition of the tuna virome and its biological and environmental determinants remain unknown. To begin to address this gap, we investigated the taxonomic diversity of viral communities inhabiting the skin mucus, gut and liver of two major tropical tuna species (skipjack and yellowfin) in individuals fished in the Atlantic and Indian Oceans. While we found significant differences in the virome composition between the organs, this was totally independent of the tuna species or sex. The tuna virome was mainly dominated by eukaryotic viruses in the digestive organs (gut and liver), while bacteriophages were predominant in the mucus. We observed the presence of specific viral families in each organ, some previously identified as fish or human pathogens (e.g., Iridoviridae, Parvoviridae, Alloherpesviridae, Papillomaviridae). Interestingly, we also detected a 'core virome' that was shared by all the organs and was mainly composed of Caudovirales, Microviridae and Circoviridae. These results show that tuna host a mosaic of viral niches, whose establishment, role and circulation remain to be elucidated.


Assuntos
Clima Tropical , Atum/virologia , Viroma , Vírus/classificação , Vírus/genética , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Feminino , Microbioma Gastrointestinal , Fígado/virologia , Masculino , Microviridae/classificação , Microviridae/genética , Microviridae/isolamento & purificação , Vírus/isolamento & purificação
11.
Microorganisms ; 9(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34442789

RESUMO

Replacement of coral by macroalgae in post-disturbance reefs, also called a "coral-macroalgal regime shift", is increasing in response to climate-driven ocean warming. Such ecosystem change is known to impact planktonic and benthic reef microbial communities but few studies have examined the effect on animal microbiota. In order to understand the consequence of coral-macroalgal shifts on the coral reef fish enteric bacteriome, we used a metabarcoding approach to examine the gut bacteriomes of 99 individual fish representing 36 species collected on reefs of the Inner Seychelles islands that, following bleaching, had either recovered to coral domination, or shifted to macroalgae. While the coral-macroalgal shift did not influence the diversity, richness or variability of fish gut bacteriomes, we observed a significant effect on the composition (R2 = 0.02; p = 0.001), especially in herbivorous fishes (R2 = 0.07; p = 0.001). This change is accompanied by a significant increase in the proportion of fermentative bacteria (Rikenella, Akkermensia, Desulfovibrio, Brachyspira) and associated metabolisms (carbohydrates metabolism, DNA replication, and nitrogen metabolism) in relation to the strong turnover of Scarinae and Siganidae fishes. Predominance of fermentative metabolisms in fish found on macroalgal dominated reefs indicates that regime shifts not only affect the taxonomic composition of fish bacteriomes, but also have the potential to affect ecosystem functioning through microbial functions.

12.
Microorganisms ; 9(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072252

RESUMO

In recent years, a growing number of studies sought to examine the composition and the determinants of the gut microflora in marine animals, including fish. For tropical tuna, which are among the most consumed fish worldwide, there is scarce information on their enteric bacterial communities and how they evolve during fish growth. In this study, we used metabarcoding of the 16S rDNA gene to (1) describe the diversity and composition of the gut bacteriome in the three most fished tuna species (skipjack, yellowfin and bigeye), and (2) to examine its intra-specific variability from juveniles to larger adults. Although there was a remarkable convergence of taxonomic richness and bacterial composition between yellowfin and bigeyes tuna, the gut bacteriome of skipjack tuna was distinct from the other two species. Throughout fish growth, the enteric bacteriome of yellowfin and bigeyes also showed significant modifications, while that of skipjack tuna remained relatively homogeneous. Finally, our results suggest that the gut bacteriome of marine fish may not always be subject to structural modifications during their growth, especially in species that maintain a steady feeding behavior during their lifetime.

13.
Proc Biol Sci ; 287(1927): 20200642, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32396801

RESUMO

Coral reefs host hundreds of thousands of animal species that are increasingly threatened by anthropogenic disturbances. These animals host microbial communities at their surface, playing crucial roles for their fitness. However, the diversity of such microbiomes is mostly described in a few coral species and still poorly defined in other invertebrates and vertebrates. Given the diversity of animal microbiomes, and the diversity of host species inhabiting coral reefs, the contribution of such microbiomes to the total microbial diversity of coral reefs could be important, yet potentially vulnerable to the loss of animal species. Analysis of the surface microbiome from 74 taxa, including teleost fishes, hard and soft corals, crustaceans, echinoderms, bivalves and sponges, revealed that more than 90% of their prokaryotic phylogenetic richness was specific and not recovered in surrounding plankton. Estimate of the total richness associated with coral reef animal surface microbiomes reached up to 2.5% of current estimates of Earth prokaryotic diversity. Therefore, coral reef animal surfaces should be recognized as a hotspot of marine microbial diversity. Loss of the most vulnerable reef animals expected under present-day scenarios of reef degradation would induce an erosion of 28% of the prokaryotic richness, with unknown consequences on coral reef ecosystem functioning.


Assuntos
Biodiversidade , Recifes de Corais , Microbiota , Microbiologia da Água , Animais , Filogenia
14.
Front Microbiol ; 9: 2501, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405564

RESUMO

Biological control using bacteriophages is a promising approach for mitigating the devastating effects of coral diseases. Several phages that infect Vibrio coralliilyticus, a widespread coral pathogen, have been isolated, suggesting that this bacterium is permissive to viral infection and is, therefore, a suitable candidate for treatment by phage therapy. In this study, we combined functional and genomic approaches to evaluate the therapeutic potential of BONAISHI, a novel V. coralliilyticus phage, which was isolated from the coral reef in Van Phong Bay (Vietnam). BONAISHI appears to be strictly lytic for several pathogenic strains of V. coralliilyticus and remains infectious over a broad range of environmental conditions. This candidate has an unusually large dsDNA genome (303 kb), with no genes that encode known toxins or implicated in lysogeny control. We identified several proteins involved in host lysis, which may offer an interesting alternative to the use of whole bacteriophages for controlling V. coralliilyticus. A preliminary therapy test showed that adding BONAISHI to an infected culture of Symbiodinium sp. cells reduced the impact of V. coralliilyticus on Symbiodinium sp. photosynthetic activity. This study showed that BONAISHI is able to mitigate V. coralliilyticus infections, making it a good candidate for phage therapy for coral disease.

15.
Microbiome ; 6(1): 147, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143055

RESUMO

BACKGROUND: The surface of marine animals is covered by abundant and diversified microbial communities, which have major roles for the health of their host. While such microbiomes have been deeply examined in marine invertebrates such as corals and sponges, the microbiomes living on marine vertebrates have received less attention. Specifically, the diversity of these microbiomes, their variability among species, and their drivers are still mostly unknown, especially among the fish species living on coral reefs that contribute to key ecosystem services while they are increasingly affected by human activities. Here, we investigated these knowledge gaps analyzing the skin microbiome of 138 fish individuals belonging to 44 coral reef fish species living in the same area. RESULTS: Prokaryotic communities living on the skin of coral reef fishes are highly diverse, with on average more than 600 OTUs per fish, and differ from planktonic microbes. Skin microbiomes varied between fish individual and species, and interspecific differences were slightly coupled to the phylogenetic affiliation of the host and its ecological traits. CONCLUSIONS: These results highlight that coral reef biodiversity is greater than previously appreciated, since the high diversity of macro-organisms supports a highly diversified microbial community. This suggest that beyond the loss of coral reefs-associated macroscopic species, anthropic activities on coral reefs could also lead to a loss of still unexplored host-associated microbial diversity, which urgently needs to be assessed.


Assuntos
Bactérias/classificação , Peixes/microbiologia , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Ração Animal , Animais , Bactérias/genética , Biodiversidade , Recifes de Corais , Peixes/classificação , Humanos , Microbiota , Filogenia , Plâncton/microbiologia , RNA Ribossômico 16S/genética , Pele/microbiologia , Especificidade da Espécie
16.
Sci Rep ; 8(1): 11311, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054519

RESUMO

Preliminary studies conducted on the human gastro-intestinal tract have revealed that enteric viral communities play a preponderant role in microbial homeostatis. However to date, such communities have never been investigated in the fish gut. Herein, we examined the main ecological traits of viruses in the digestive tract of a euryhaline fish, the tilapia Sarotherodon melanotheron. Individuals were collected at 8 different sites in Senegal covering a salinity gradient from 3 to 104‰, and showing large disparities in their organic pollutant concentrations. Results showed that the gut of S. melanotheron is home to a highly abundant viral community (0.2-10.7 × 109 viruses ml-1), distinct from the surrounding water, and essentially composed of phages of which a substantial proportion is temperate (the fraction of lysogenized cells-FLC ranging from 8.1 to 33.0%). Also, a positive and significant correlation was detected between FLC and the concentrations of polycyclic aromatic hydrocarbon in sediment, while no clear relationships were found between salinity and any of the microbial parameters considered. Finally, our data suggest that virus-bacteria interactions within the fish intestine are likely sensitive to the presence of particular xenobiotics, which may compromise the balance in the gut microbiota, and subsequently affect the health of their host.


Assuntos
Bacteriófagos/isolamento & purificação , Trato Gastrointestinal/virologia , Tilápia/virologia , Animais , Bacteriófagos/metabolismo , Ecossistema , Salinidade , Senegal
17.
ISME J ; 12(4): 1109-1126, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339825

RESUMO

The grazing activity by specific marine organisms represents a growing threat to the survival of many scleractinian species. For example, the recent proliferation of the corallivorous gastropod Drupella now constitutes a critical case in all South-East Asian waters. If the damaging effects caused by this marine snail on coral polyps are relatively well known, the indirect incidence of predation on coral microbial associates is still obscure and might also potentially impair coral health. In this study, we compared the main ecological traits of coral-associated bacterial and viral communities living in the mucus layer of Acropora formosa and Acropora millepora, of healthy and predated individuals (i.e., colonized by Drupella rugosa), in the Bay of Van Phong (Vietnam). Our results show a substantial impact of the gastropod on a variety of microbiological markers. Colonized corals harbored much more abundant and active epibiotic bacteria whose community composition shifted toward more pathogenic taxa (belonging to the Vibrionales, Clostridiales, Campylobacterales, and Alteromonadales orders), together with their specific phages. Viral epibionts were also greatly influenced by Drupella corallivory with spectacular modifications in their concentrations, life strategies, genotype richness, and diversity. Novel and abundant circular Rep-encoding ssDNA viruses (CRESS-DNA viruses) were detected and characterized in grazed corals and we propose that their occurrence may serve as indicator of the coral health status. Finally, our results reveal that corallivory can cause severe dysbiosis by altering virus-bacteria interactions in the mucus layer, and ultimately favoring the development of local opportunistic infections.


Assuntos
Antozoários/microbiologia , Caramujos/fisiologia , Animais , Antozoários/virologia , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Comportamento Predatório , Fenômenos Fisiológicos Virais , Vírus/genética , Vírus/isolamento & purificação
18.
PLoS One ; 11(12): e0168721, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28006013

RESUMO

In Vietnam, a great number of toxic substances, including carcinogens and procarcinogens, from industrial and agricultural activities, food production, and healthcare services are daily released into the environment. In the present study, we report the development of novel yeast-based biosensor systems to determine both genotoxic carcinogens and procarcinogens by cotransformation with two plasmids. One plasmid is carrying human CPR and CYP (CYP3A4, CYP2B6, or CYP2D6) genes, while the other contains the RAD54-GFP reporter construct. The three resulting coexpression systems bearing both CPR-CYP and RAD54-GFP expression cassettes were designated as CYP3A4/CYP2B6/CYP2D6 + RAD54 systems, respectively and used to detect and evaluate the genotoxic potential of carcinogens and procarcinogens by selective activation and induction of both CPR-CYP and RAD54-GFP expression cassettes in response to DNA damage. Procarcinogens were shown to be predominantly, moderately or not bioactivated by one of the CYP enzymes and thus selectively detected by the specific coexpression system. Aflatoxin B1 and benzo(a)pyrene were predominantly detected by the CYP3A4 + RAD54 system, while N-nitrosodimethylamine only moderately activated the CYP2B6 + RAD54 reporter system and none of them was identified by the CYP2D6 + RAD54 system. In contrast, the genotoxic carcinogen, methyl methanesulfonate, was detected by all systems. Our yeast-reporter system can be performed in 384-well microplates to provide efficient genotoxicity testing to identify various carcinogenic compounds and reduce chemical consumption to about 53% as compared with existing 96-well genotoxicity bioassays. In association with a liquid handling robot, this platform enables rapid, cost-effective, and high-throughput screening of numerous analytes in a fully automated and continuous manner without the need for user interaction.


Assuntos
Técnicas Biossensoriais/métodos , Carcinógenos/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Fluorescência Verde/genética , Humanos , Testes de Mutagenicidade , Plasmídeos/genética , Saccharomyces cerevisiae/efeitos dos fármacos
19.
J Microbiol Methods ; 128: 16-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27302040

RESUMO

The direct counts of bacteria inhabiting coral mucus were performed by flow cytometry testing four fluorescent dyes (SYBR®Green I, HCS, TOPRO®3, SYTO®62) with three different scleractinian species. Results obtained with SYTO62 were the most reliable based on the comparison with standardized epifluorescence counts and the resolution of cytograms.


Assuntos
Antozoários/microbiologia , Bactérias/isolamento & purificação , Contagem de Colônia Microbiana , Citometria de Fluxo , Animais , Corantes Fluorescentes , Viabilidade Microbiana
20.
FEMS Microbiol Lett ; 363(1): fnv216, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26567907

RESUMO

Marine organic aggregates are sites of high of viral accumulation; however, still little is known about their colonization processes and interactions with their local bacterial hosts. By taking advantage of a novel approach (paramagnetic functionalized microsphere method) to create and incubate artificial macroaggregates, we examined the small-scale movements of viruses and bacteria between such marine snow particles and the surrounding water. The examination of the codynamics of both free-living and attached viral and bacterial abundance, over 12 hours of incubation in virus-free water, suggests that aggregates are rather comparable to viral factories than to viral traps where a significant part of the virions production might be locally diverted to the water column. Also, the near-zero proportion of lysogenized cells measured in aggregates after mitomycin-C induction seems to indicate that lysogeny is not a prominent viral reproduction pathway in organic aggregates where most viruses might rather be virulent. Finally, we hypothesize that, contrary to bacteria, which can use both strong attachment and detachment from aggregates (two-way motion of bacteria), the adsorption of planktonic viruses appears to be numerically negligible compared to their massive export from the aggregates into the water column (one-way motion of viruses).


Assuntos
Organismos Aquáticos/isolamento & purificação , Organismos Aquáticos/virologia , Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/isolamento & purificação , Consórcios Microbianos , Ecossistema , Água do Mar/microbiologia , Água do Mar/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...