Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 21(6): 1495-1509, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35584362

RESUMO

The oxidation of methionine has emerged as an important post-translational modification of proteins. A number of studies have suggested that the oxidation of methionines in select proteins can have diverse impacts on cell physiology, ranging from detrimental effects on protein stability to functional roles in cell signaling. Despite its importance, the large-scale investigation of methionine oxidation in a complex matrix, such as the cellular proteome, has been hampered by technical limitations. We report a methodology, methionine oxidation by blocking (MobB), that allows for accurate and precise quantification of low levels of methionine oxidation typically observed in vivo. To demonstrate the utility of this methodology, we analyzed the brain tissues of young (6 m.o.) and old (20 m.o.) mice and identified over 280 novel sites for in vivo methionine oxidation. We further demonstrated that oxidation stoichiometries for specific methionine residues are highly consistent between individual animals and methionine sulfoxides are enriched in clusters of functionally related gene products including membrane and extracellular proteins. However, we did not detect significant changes in methionine oxidation in brains of old mice. Our results suggest that under normal conditions, methionine oxidation may be a biologically regulated process rather than a result of stochastic chemical damage.


Assuntos
Metionina , Processamento de Proteína Pós-Traducional , Animais , Encéfalo/metabolismo , Metionina/metabolismo , Camundongos , Oxirredução , Proteoma/genética , Proteoma/metabolismo
2.
J Biol Chem ; 298(5): 101872, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35346688

RESUMO

The oxidation of protein-bound methionines to form methionine sulfoxides has a broad range of biological ramifications, making it important to delineate factors that influence methionine oxidation rates within a given protein. This is especially important for biopharmaceuticals, where oxidation can lead to deactivation and degradation. Previously, neighboring residue effects and solvent accessibility have been shown to impact the susceptibility of methionine residues to oxidation. In this study, we provide proteome-wide evidence that oxidation rates of buried methionine residues are also strongly influenced by the thermodynamic folding stability of proteins. We surveyed the Escherichia coli proteome using several proteomic methodologies and globally measured oxidation rates of methionine residues in the presence and absence of tertiary structure, as well as the folding stabilities of methionine-containing domains. These data indicated that buried methionines have a wide range of protection factors against oxidation that correlate strongly with folding stabilities. Consistent with this, we show that in comparison to E. coli, the proteome of the thermophile Thermus thermophilus is significantly more stable and thus more resistant to methionine oxidation. To demonstrate the utility of this correlation, we used native methionine oxidation rates to survey the folding stabilities of E. coli and T. thermophilus proteomes at various temperatures and propose a model that relates the temperature dependence of the folding stabilities of these two species to their optimal growth temperatures. Overall, these results indicate that oxidation rates of buried methionines from the native state of proteins can be used as a metric of folding stability.


Assuntos
Proteoma , Proteômica , Escherichia coli/genética , Escherichia coli/metabolismo , Metionina/metabolismo , Oxirredução , Dobramento de Proteína , Proteoma/metabolismo
3.
Prion ; 14(1): 193-205, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32744136

RESUMO

Prion diseases are characterized by the self-templated misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc). The detailed molecular basis of the misfolding and aggregation of PrPC remains incompletely understood. It is believed that the transient misfolding of PrPC into partially structured intermediates precedes the formation of insoluble protein aggregates and is a critical component of the prion misfolding pathway. A number of environmental factors have been shown to induce the destabilization of PrPC and promote its initial misfolding. Recently, oxidative stress and reactive oxygen species (ROS) have emerged as one possible mechanism by which the destabilization of PrPC can be induced under physiological conditions. Methionine residues are uniquely vulnerable to oxidation by ROS and the formation of methionine sulfoxides leads to the misfolding and subsequent aggregation of PrPC. Here, we provide a review of the evidence for the oxidation of methionine residues in PrPC and its potential role in the formation of pathogenic prion aggregates.


Assuntos
Metionina/metabolismo , Proteínas Priônicas/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Oxirredução , Estresse Oxidativo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Proteínas Priônicas/química
4.
J Proteome Res ; 19(2): 624-633, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31801345

RESUMO

The oxidation of methionine is an important post-translational modification of proteins with numerous roles in physiology and pathology. However, the quantitative analysis of methionine oxidation on a proteome-wide scale has been hampered by technical limitations. Methionine is readily oxidized in vitro during sample preparation and analysis. In addition, there is a lack of enrichment protocols for peptides that contain an oxidized methionine residue, making the accurate quantification of methionine oxidation difficult to achieve on a global scale. Herein, we report a methodology to circumvent these issues by isotopically labeling unoxidized methionines with 18O-labeled hydrogen peroxide and quantifying the relative ratios of 18O- and 16O-oxidized methionines. We validate our methodology using artificially oxidized proteomes made to mimic varying degrees of methionine oxidation. Using this method, we identify and quantify a number of novel sites of in vivo methionine oxidation in an unstressed human cell line.


Assuntos
Metionina , Proteoma , Humanos , Metionina/metabolismo , Oxirredução , Peptídeos , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(13): 6081-6090, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30846556

RESUMO

The stability of proteins influences their tendency to aggregate, undergo degradation, or become modified in cells. Despite their significance to understanding protein folding and function, quantitative analyses of thermodynamic stabilities have been mostly limited to soluble proteins in purified systems. We have used a highly multiplexed proteomics approach, based on analyses of methionine oxidation rates, to quantify stabilities of ∼10,000 unique regions within ∼3,000 proteins in human cell extracts. The data identify lysosomal and extracellular proteins as the most stable ontological subsets of the proteome. We show that the stability of proteins impacts their tendency to become oxidized and is globally altered by the osmolyte trimethylamine N-oxide (TMAO). We also show that most proteins designated as intrinsically disordered retain their unfolded structure in the complex environment of the cell. Together, the data provide a census of the stability of the human proteome and validate a methodology for global quantitation of folding thermodynamics.


Assuntos
Metionina/metabolismo , Dobramento de Proteína , Estabilidade Proteica , Proteínas/química , Proteoma/metabolismo , Fibroblastos/metabolismo , Humanos , Espectrometria de Massas , Muramidase/metabolismo , Oxirredução , Conformação Proteica , Termodinâmica
6.
Microbiology (Reading) ; 161(6): 1251-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25808171

RESUMO

Peptidoglycan associated lipoprotein (Pal) of Escherichia coli (E. coli) is a characteristic bacterial lipoprotein, with an N-terminal lipid moiety anchoring it to the outer membrane. Since its discovery over three decades ago, Pal has been well studied for its participation in the Tol-Pal complex which spans the periplasm and has been proposed to play important roles in bacterial survival, pathogenesis and virulence. Previous studies of Pal place the lipoprotein in the periplasm of E. coli, allowing it to interact with Tol proteins and the peptidoglycan layer. Here, we describe for the first time, a subpopulation of Pal which is present on the cell surface of E. coli. Flow cytometry and confocal microscopy detect anti-Pal antibodies on the surface of intact E. coli cells. Interestingly, Pal is surface exposed in an 'all or nothing' manner, such that most of the cells contain only internal Pal, with fewer cells ( < 20  %) exhibiting surface Pal.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Proteínas de Escherichia coli/análise , Escherichia coli/química , Lipoproteínas/análise , Proteínas de Membrana/análise , Peptidoglicano/análise , Citometria de Fluxo , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...