Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Vet Microbiol ; 284: 109819, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390703

RESUMO

The development of alternatives to antibiotics is essential for the treatment of animal infections and as a measure to reduce the selective pressure on antibiotics that are critical for human medicine. Metal complexes have been highlighted for their antimicrobial activity against several bacterial pathogens. In particular, manganese carbonyl complexes have shown efficacy against multidrug-resistant Gram-negative pathogens, and relatively low cytotoxicity against avian macrophages and in wax moth larval models. They are thus potential candidates for deployment against Avian Pathogenic Escherichia coli (APEC), the aetiological agent of avian colibacillosis, which results in severe animal welfare issues and financial losses worldwide. This study aimed to determine the efficacy of [Mn(CO)3(tqa-κ3N)]Br in Galleria mellonella and chick models of infection against APEC. The results demonstrated in vitro and in vivo antibacterial activity against all antibiotic-resistant APEC test isolates screened in the study.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Humanos , Manganês/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Escherichia coli , Antibacterianos/farmacologia , Galinhas , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia
2.
Vet Parasitol Reg Stud Reports ; 42: 100889, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321794

RESUMO

Gastrointestinal parasites are among the most economically important pathogens of small ruminants causing serious economic losses and animal welfare problems for the livestock industry worldwide. The emergence of anthelmintic resistant H. contortus in small ruminants is a serious problem because it undermines effective helminth control and results in reduced productivity. Little is known about resistance to benzimidazoles (BZ) in Haemonchus in goats and sheep in Uganda. The objective of this study was to determine the prevalence of gastrointestinal parasites and to identify the presence of benzimidazole resistance associated mutations in the ß-tubulin isotype 1 gene of Haemonchus contortus in goats from selected districts of Uganda. A total of 200 goats from 10 districts of Uganda slaughtered at Kalerwe abattoir in Kampala were sampled for H. contortus adult worms. Faecal samples were also collected to detect other intestinal parasites. Faecal microscopy and analysis were performed using flotation and sedimentation techniques. DNA was extracted from adult worms and PCR and sequencing of the ITS- 2 region and ß-tubulin isotype 1 gene performed to identify H. contortus species and to determine the presence of mutations associated with anthelmintic resistance respectively. Faecal microscopy showed that the most prevalent intestinal parasites were coccidia (98%), strongyles (97.5%), Strongyloides (82%), Paramphistomum (74.5%), Moniezia (46%), Fasciola (1.5%) and Trichuris (1%). Most goats had a high intestinal burden of coccidia (≥ 5000 oocyst per gram) and strongyles (≥ 1000 egg per gram), 65% and 67.5%, respectively. The prevalence of H. contortus adult worms was 63% (126/200). Sequencing of the partial ß-tubulin isotype 1 gene of 54 Haemonchus contortus adult male isolates revealed the presence of mutations associated with anthelmintic resistance. The F200Y mutation was the most common mutation (13% of samples with good beta-tubulin sequences) followed by the E198A and E198K mutations, both found in 9% of sequenced samples. Mutation F167Y was not identified in any of the samples and there were no heterozygous individuals for any of the SNPS associated with BZ resistance that were identified in this study. These findings highlight the need for controlled use of anthelmintics especially benzimidazoles, to enable sustainable control of H. contortus in Uganda, and a need for further investigation to understand the resistance of other parasites identified in this study.


Assuntos
Anti-Helmínticos , Haemonchus , Parasitos , Masculino , Ovinos , Animais , Haemonchus/genética , Tubulina (Proteína)/genética , Cabras , Prevalência , Uganda/epidemiologia , Benzimidazóis/farmacologia , Anti-Helmínticos/farmacologia , Mutação
3.
Biofabrication ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537072

RESUMO

The need for maintaining cell-spheroid viability and function within high-density cultures is unmet for various clinical and experimental applications, including cell therapies. One immediate application is for transplantation of pancreatic islets, a clinically recognized treatment option to cure type 1 diabetes; islets are isolated from a donor for subsequent culture prior to transplantation. However, high seeding conditions cause unsolicited fusion of multiple spheroids, thereby limiting oxygen diffusion to induce hypoxic cell death. Here we introduce a culture dish incorporating a micropyramid-patterned surface to prevent the unsolicited fusion and oxygen-permeable bottom for optimal oxygen environment. A 400µm-thick, oxygen-permeable polydimethylsiloxane sheet topped with micropyramid pattern of 400µm-base and 200µm-height was fabricated to apply to the 24-well plate format. The micropyramid pattern separated the individual pancreatic islets to prevent the fusion of multiple islets. This platform supported the high oxygen demand of islets at high seeding density at 260 islet equivalents cm-2, a 2-3-fold higher seeding density compared to the conventional islet culture used in a preparation for the clinical islet transplantations, demonstrating improved islet morphology, metabolism and function in a 4 d-culture. Transplantation of these islets into immunodeficient diabetic mice exhibited significantly improved engraftment to achieve euglycemia compared to islets cultured in the conventional culture wells. Collectively, this simple design modification allows for high-density cultures of three-dimensional cell spheroids to improve the viability and function for an array of investigational and clinical replacement tissues.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Camundongos , Animais , Oxigênio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Hipóxia/metabolismo
4.
Int J Antimicrob Agents ; 58(1): 106362, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34010710

RESUMO

Multidrug-resistant (MDR) Enterobacterales are a priority health issue with few treatment options. Recently, fosfomycin has been reconsidered for MDR bacterial infections. Zidovudine, licensed for the treatment of human immunodeficiency virus (HIV), has unexploited antibacterial properties and has been considered for drug repurposing. The aim of this study was to assess the effect of the combination of fosfomycin plus zidovudine against clinical MDR Enterobacterales isolates. Minimum inhibitory concentration (MIC) determination and checkerboard assays for 36 MDR Enterobacterales strains were performed. In addition, fosfomycin-resistant strains were evaluated using time-kill assay and in an in vivo Galleria mellonella infection model. Zidovudine and fosfomycin MICs ranged between 0.06 to >64 mg/L and 0.125 to >512 mg/L, respectively. A synergistic effect [fractional inhibitory concentration index (FICI) ≤0.5] was observed in 25 isolates and no antagonistic effect was observed in the remaining isolates. For 7 of 8 fosfomycin-resistant strains (MIC > 32 mg/L), zidovudine combination was able to restore fosfomycin susceptibility. These results were confirmed by time-kill assays. Fosfomycin + zidovudine presented greater larval survival (20-50%) than monotherapy. Synergistic activity was observed for fosfomycin + zidovudine in 69.4% of the tested strains. In vivo experiments confirmed the enhanced effectiveness of the combination. The zidovudine concentrations tested here can be reached in human serum using the actual licensed dosage, therefore this combination deserves further clinical investigation.


Assuntos
Infecções por Enterobacteriaceae/tratamento farmacológico , Enterobacteriaceae/efeitos dos fármacos , Fosfomicina/farmacologia , Zidovudina/farmacologia , Animais , Antibacterianos , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Quimioterapia Combinada , Infecções por Enterobacteriaceae/microbiologia , Humanos , Larva/efeitos dos fármacos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Modelos Animais , Mariposas/efeitos dos fármacos , Mariposas/microbiologia
5.
Rev Sci Instrum ; 92(2): 023903, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648055

RESUMO

Extreme pressures and high magnetic fields can affect materials in profound and fascinating ways. However, large pressures and fields are often mutually incompatible; the rapidly changing fields provided by pulsed magnets induce eddy currents in the metallic components used in conventional pressure cells, causing serious heating, forces, and vibration. Here, we report a diamond-anvil-cell made mainly out of insulating composites that minimizes inductive heating while retaining sufficient strength to apply pressures of up to 8 GPa. Any residual metallic component is made of low-conductivity metals and patterned to reduce eddy currents. The simple design enables rapid sample or pressure changes, desired by pulsed-magnetic-field-facility users. The pressure cell has been used in pulsed magnetic fields of up to 65 T with no noticeable heating at cryogenic temperatures. Several measurement techniques are possible inside the cell at temperatures as low as 500 mK.

6.
Food Funct ; 11(11): 9370-9396, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33094767

RESUMO

This review summarizes the mechanisms of antibacterial action of green tea catechins, discussing the structure-activity relationship (SAR) studies for each mechanism. The antibacterial activity of green tea catechins results from a variety of mechanisms that can be broadly classified into the following groups: (1) inhibition of virulence factors (toxins and extracellular matrix); (2) cell wall and cell membrane disruption; (3) inhibition of intracellular enzymes; (4) oxidative stress; (5) DNA damage; and (6) iron chelation. These mechanisms operate simultaneously with relative importance differing among bacterial strains. In all SAR studies, the highest antibacterial activity is observed for galloylated compounds (EGCG, ECG, and theaflavin digallate). This observation, combined with numerous experimental and theoretical evidence, suggests that catechins share a common binding mode, characterized by the formation of hydrogen bonds and hydrophobic interactions with their target.


Assuntos
Antibacterianos/farmacologia , Catequina/farmacologia , Chá , Antibacterianos/química , Catequina/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade
7.
Nat Commun ; 11(1): 3482, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661299

RESUMO

CeRhIn5 provides a textbook example of quantum criticality in a heavy fermion system: Pressure suppresses local-moment antiferromagnetic (AFM) order and induces superconductivity in a dome around the associated quantum critical point (QCP) near pc ≈ 23 kbar. Strong magnetic fields also suppress the AFM order at a field-induced QCP at Bc ≈ 50 T. In its vicinity, a nematic phase at B* ≈ 28 T characterized by a large in-plane resistivity anisotropy emerges. Here, we directly investigate the interrelation between these phenomena via magnetoresistivity measurements under high pressure. As pressure increases, the nematic transition shifts to higher fields, until it vanishes just below pc. While pressure suppresses magnetic order in zero field as pc is approached, we find magnetism to strengthen under strong magnetic fields due to suppression of the Kondo effect. We reveal a strongly non-mean-field-like phase diagram, much richer than the common local-moment description of CeRhIn5 would suggest.

8.
J Glob Antimicrob Resist ; 22: 594-597, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32387640

RESUMO

OBJECTIVES: The emergence of multidrug-resistance (MDR) in Streptococcus pneumoniae clones and non-vaccine serotypes necessitate the development of novel treatment strategies. This work aimed to determine the efficacy of the Mn complex [Mn(CO)3(tpa-κ3N)]Br against clinically important MDR strains of S. pneumoniae. METHODS: Twenty MDR clinicalS. pneumoniae strains were included in this study. Minimum inhibitory concentrations (MICs) of [Mn(CO)3(tpa-κ3N)]Br were determined via broth microdilution alone and in combination with other antimicrobial agents using checkerboard assays and/or disc diffusion tests. In vitro efficacy was assessed by time-kill assays while in vivo efficacy was tested using the insect model Galleria mellonella. RESULTS: [Mn(CO)3(tpa-κ3N)]Br showed moderate in vitro efficacy against S. pneumoniae coupled with bactericidal activity. Checkerboard and disc diffusion assays showed synergy between [Mn(CO)3(tpa-κ3N)]Br and tetracycline, and the combination of both agents caused rapid kill-kinetics and reduced the MIC below the susceptibility breakpoint of 1 mg/L even for tetracycline-resistant strains of S. pneumoniae. Similar results were observed for the erythromycin- and the co-trimoxazole-Mn complex combination. In the G. mellonella infection model, mortality and morbidity rates at 96 h were significantly lower in larvae treated with [Mn(CO)3(tpa-κ3N)]Br than phosphate buffered saline, while treatment with the tetracycline-Mn complex combination was superior to monotherapy, resulting in significantly lower mortality and morbidity rates (p < 0.049). CONCLUSIONS: We show that [Mn(CO)3(tpa-κ3N)]Br has in vitro and in vivo antibacterial activity against clinically relevant strains of S. pneumoniae and has the potential to be used in combination with currently available antibiotics to increase their effectiveness against MDR S. pneumoniae.


Assuntos
Antibacterianos , Streptococcus pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Eritromicina , Manganês , Testes de Sensibilidade Microbiana
9.
Int J Antimicrob Agents ; 55(3): 105862, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31837449

RESUMO

This study aimed to investigate the mechanisms of colistin resistance in 64 Acinetobacter baumannii isolates obtained from patients with ventilator-associated pneumonia hospitalised in Greece, Italy and Spain. In total, 31 A. baumannii isolates were colistin-resistant. Several novel amino acid substitutions in PmrCAB were found in 27 colistin-resistant A. baumannii. Most substitutions were detected in PmrB, indicating the importance of the histidine kinase for colistin resistance. In two colistin-resistant isolates, 93 amino acid changes were observed in PmrCAB compared with A. baumannii ACICU, and homologous recombination across different clonal lineages was suggested. Analysis of gene expression revealed increased pmrC expression in isolates harbouring pmrCAB mutations. Complementation of A. baumannii ATCC 19606 and ATCC 17978 with a pmrAB variant revealed increased pmrC expression but unchanged colistin MICs, indicating additional unknown factors associated with colistin resistance. Moreover, a combination of PmrB and PmrC alterations was associated with very high colistin MICs, suggesting accumulation of mutations as the mechanism for high-level resistance. The pmrC homologue eptA was detected in 29 colistin-susceptible and 26 colistin-resistant isolates. ISAba1 was found upstream of eptA in eight colistin-susceptible and one colistin-resistant isolate and eptA was disrupted by ISAba125 in two colistin-resistant isolates. Whilst in most isolates an association of eptA with colistin resistance was excluded, in one isolate an amino acid substitution in EptA (R127L) combined with a point mutation in ISAba1 upstream of eptA contributed to elevated colistin MICs. This study helps to gain an insight into the diversity and complexity of colistin resistance in A. baumannii.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Substituição de Aminoácidos , Farmacorresistência Bacteriana/genética , Grécia , Humanos , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico
10.
J Med Microbiol ; 68(10): 1552-1559, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31419210

RESUMO

Introductio n. Pseudomonas aeruginosa is an important Gram-negative pathogen that is intrinsically multidrug-resistant (MDR) and frequently associated with healthcare-associated outbreaks. With increasing resistance to antibiotics and with very few novel drugs under development, clinicians often use combinations to treat critically ill patients.Aim. The aim of this study was to evaluate the ability of epigallocatechin (EGCG) to restore the activity of aztreonam against clinical MDR strains of P. aeruginosa.Methodology. Checkerboard and time-kill kinetic assays were performed to assess synergy in vitro and the Galleria mellonella model of infection was used to test the efficacy of the combination in vivo. Accumulation assays were performed to gain insight into the mechanism of action.Results. The results demonstrate that synergy between aztreonam and EGCG exists [fractional inhibitory concentration indices (FICIs) 0.02-0.5], with the combination affording significantly (P=<0.05) enhanced bacterial killing, with a >3 log10 reduction in colony-forming units ml-1 at 24 h. EGCG was able to restore susceptibility to aztreonam to a level equal to or below the breakpoint set by the European Committee for Antimicrobial Susceptibility Testing. In G. mellonella, the combination was superior to monotherapy, with increased larval survival observed (94 % vs ≤63 %). We also demonstrated the relatively low toxicity of EGCG to human keratinocytes and G. mellonella larvae. Accumulation assay data suggest that the mechanism of synergy may be due to EGCG increasing the uptake of aztreonam.Conclusion. EGCG was able to restore the activity of aztreonam against MDR P. aeruginosa. The data presented support further evaluation of the aztreonam-EGCG combination and highlight its potential for use in clinical medicine.


Assuntos
Antibacterianos/farmacologia , Aztreonam/farmacologia , Catequina/análogos & derivados , Polifenóis/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Catequina/farmacologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Humanos , Larva/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento
11.
Nat Commun ; 10(1): 2522, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175310

RESUMO

The discovery of superconductivity at 260 K in hydrogen-rich compounds like LaH10 re-invigorated the quest for room temperature superconductivity. Here, we report the temperature dependence of the upper critical fields µ0Hc2(T) of superconducting H3S under a record-high combination of applied pressures up to 160 GPa and fields up to 65 T. We find that Hc2(T) displays a linear dependence on temperature over an extended range as found in multigap or in strongly-coupled superconductors, thus deviating from conventional Werthamer, Helfand, and Hohenberg (WHH) formalism. The best fit of Hc2(T) to the WHH formalism yields negligible values for the Maki parameter α and the spin-orbit scattering constant λSO. However, Hc2(T) is well-described by a model based on strong coupling superconductivity with a coupling constant λ ~ 2. We conclude that H3S behaves as a strong-coupled orbital-limited superconductor over the entire range of temperatures and fields used for our measurements.

12.
Artigo em Inglês | MEDLINE | ID: mdl-30617096

RESUMO

Colistin resistance in Acinetobacter baumannii is of great concern and is a threat to human health. In this study, we investigate the mechanisms of colistin resistance in four isogenic pairs of A. baumannii isolates displaying an increase in colistin MICs. A mutation in pmrB was detected in each colistin-resistant isolate, three of which were novel (A28V, I232T, and ΔL9-G12). Increased expression of pmrC was shown by semi-quantitative reverse transcription-PCR (qRT-PCR) for three colistin-resistant isolates, and the addition of phosphoethanolamine (PEtN) to lipid A by PmrC was revealed by mass spectrometry. Interestingly, PEtN addition was also observed in some colistin-susceptible isolates, indicating that this resistance mechanism might be strain specific and that other factors could contribute to colistin resistance. Furthermore, the introduction of pmrAB carrying the short amino acid deletion ΔL9-G12 into a pmrAB knockout strain resulted in increased pmrC expression and lipid A modification, but colistin MICs remained unchanged, further supporting the strain specificity of this colistin resistance mechanism. Of note, a mutation in the pmrC homologue eptA and a point mutation in ISAba1 upstream of eptA were associated with colistin resistance and increased eptA expression, which is a hitherto undescribed resistance mechanism. Moreover, no cost of fitness was observed for colistin-resistant isolates, while the virulence of these isolates was increased in a Galleria mellonella infection model. Although the mutations in pmrB were associated with colistin resistance, PEtN addition appears not to be the sole factor leading to colistin resistance, indicating that the mechanism of colistin resistance is far more complex than previously suspected and is potentially strain specific.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Fatores de Transcrição/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/patogenicidade , Animais , Modelos Animais de Doenças , Humanos , Lipídeo A/metabolismo , Testes de Sensibilidade Microbiana , Mariposas/microbiologia
13.
J Med Microbiol ; 68(1): 111-114, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30475200

RESUMO

In recent years, several plasmids harbouring genes encoding phosphoethanolamine transferases conferring colistin resistance have been described in multiple Enterobacteriaceae species. Avian Pathogenic E. coli (APEC) causes colibacillosis and is responsible for a considerable proportion of the disease burden in commercial poultry flocks, and may be linked to zoonotic infections in humans. Here, we describe the genotypic and phenotypic characteristics of a multidrug-resistant APEC ST69 isolate (APECA2), recovered in 2016 from a diseased broiler at post-mortem examination in Germany. The isolate was resistant to several antibiotics of human and veterinary importance, including colistin. The mcr-1 gene was detected on a mobile genetic element located on an IncHI2/ST4 plasmid, which was characterized using long-read Nanopore and short-read Illumina sequencing of purified plasmid. Isolate APECA2 displayed resistance to chicken serum and harbours numerous virulence genes. This study highlights the public health importance of enhanced antimicrobial resistance surveillance and strict antimicrobial stewardship in human and veterinary healthcare.


Assuntos
Antibacterianos/farmacologia , Galinhas/microbiologia , Colistina/farmacologia , Infecções por Escherichia coli/veterinária , Escherichia coli/isolamento & purificação , Doenças das Aves Domésticas/microbiologia , Animais , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Genótipo , Alemanha , Plasmídeos/genética , Virulência/genética
14.
Adv Microb Physiol ; 73: 123-169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30262108

RESUMO

With the advent of the global antimicrobial resistance (AMR) crisis, our arsenal of effective antibiotics is diminishing. The widespread use and misuse of antibiotics in human and veterinary medicine, compounded by the lack of novel classes of antibiotic in the pharmaceutical pipeline, has left a hole in our antibiotic armamentarium. Thus, alternatives to traditional antibiotics are being investigated, including two major groups of antibacterial agents, which have been extensively studied, phytochemicals and metals. Within these groups, there are several subclasses of compound/elements, including polyphenols and metal nanoparticles, which could be used to complement traditional antibiotics, either to increase their potency or extend their spectrum of activity. Alone or in combination, these antibacterial agents have been shown to be effective against a vast array of human and animal bacterial pathogens, including those resistant to licensed antibacterials. These alternative antibacterial agents could be a key element in our fight against AMR and provide desperately needed options, to veterinary and medical clinicians alike.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Metais/isolamento & purificação , Metais/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Descoberta de Drogas/tendências
15.
J Med Microbiol ; 67(7): 931-935, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29799389

RESUMO

Extended-spectrum cephalosporin- and/or carbapenem-resistant (ESCR and/or CarbR) Enterobacteriaceae constitute a public health hazard because of limited treatment options and are endemic among humans in Greece. Recently, ESCR and CarbREnterobacteriaceae have been increasingly isolated from companion animals, stressing their potential role as a reservoir for humans. However, the presence of ESCR bacteria in companion animals within Greek households has not been determined yet. Genes conferring the ESCR and CarbR phenotype were detected among canine isolates and their chromosomal or plasmid location was determined. Standard methods were applied for plasmid characterization. The clonal relatedness of the recovered isolates was examined by multilocus sequence typing (MLST). Here, we report the first findings on the presence of ESCREnterobacteriaceae in healthy Greek dogs. ESCREscherichia coli isolates were associated with different sequence types (STs), including the human pandemic ST131 clone. The occurrence of human-related ESBL/pAmpC genes, plasmid types and/or strain STS in this animal reservoir suggests possible bilateral transmission.


Assuntos
Portador Sadio/veterinária , Infecções por Escherichia coli/veterinária , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , Resistência beta-Lactâmica , beta-Lactamases/genética , Animais , Portador Sadio/microbiologia , Cães , Escherichia coli/classificação , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Características da Família , Feminino , Genes Bacterianos , Genótipo , Grécia , Masculino , Tipagem de Sequências Multilocus , Animais de Estimação , Plasmídeos/análise
16.
Sci Rep ; 8(1): 7674, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769695

RESUMO

The blaSHV-12 ß-lactamase gene is one of the most prevalent genes conferring resistance to extended-spectrum ß-lactams in Enterobacteriaceae disseminating within and between reservoirs, mostly via plasmid-mediated horizontal gene transfer. Yet, studies regarding the biology of plasmids encoding blaSHV-12 are very limited. In this study, we revealed the emergence of IncX3 plasmids alongside IncI1α/γ in blaSHV-12 in animal-related Escherichia coli isolates. Four representative blaSHV-12-encoding IncX3 plasmids were selected for genome sequencing and further genetic and functional characterization. We report here the first complete sequences of IncX3 plasmids of animal origin and show that IncX3 plasmids exhibit remarkable synteny in their backbone, while the major differences lie in their blaSHV-12-flanking region. Our findings indicate that plasmids of this subgroup are conjugative and highly stable, while they exert no fitness cost on their bacterial host. These favourable features might have contributed to the emergence of IncX3 amongst SHV-12-producing E. coli in the Netherlands, highlighting the epidemic potential of these plasmids.


Assuntos
Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plasmídeos/genética , Doenças das Aves Domésticas/epidemiologia , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/transmissão , Proteínas de Escherichia coli/metabolismo , Genômica , Humanos , Plasmídeos/metabolismo , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/transmissão , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
17.
Sensors (Basel) ; 17(11)2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29117137

RESUMO

In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L) as low as a few parts in one hundred million (≈10-8). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber's index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.

18.
PLoS One ; 12(10): e0186359, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29040287

RESUMO

Antimicrobial resistance is a growing global concern in human and veterinary medicine, with an ever-increasing void in the arsenal of clinicians. Novel classes of compounds including carbon monoxoide-releasing molecules (CORMs), for example the light-activated metal complex [Mn(CO)3(tpa-κ3N)]Br, could be used as alternatives/to supplement traditional antibacterials. Avian pathogenic Escherichia coli (APEC) represent a large reservoir of antibiotic resistance and can cause serious clinical disease in poultry, with potential as zoonotic pathogens, due to shared serotypes and virulence factors with human pathogenic E. coli. The in vitro activity of [Mn(CO)3(tpa-κ3N)]Br against multidrug-resistant APECs was assessed via broth microtitre dilution assays and synergy testing with colistin performed using checkerboard and time-kill assays. In vivo antibacterial activity of [Mn(CO)3(tpa-κ3N)]Br alone and in combination with colistin was determined using the Galleria mellonella wax moth larvae model. Animals were monitored for life/death, melanisation and bacterial numbers enumerated from larval haemolymph. In vitro testing produced relatively high [Mn(CO)3(tpa-κ3N)]Br minimum inhibitory concentrations (MICs) of 1024 mg/L. However, its activity was significantly increased with the addition of colistin, bringing MICs down to ≤32 mg/L. This synergy was confirmed in time-kill assays. In vivo assays showed that the combination of [Mn(CO)3(tpa-κ3N)]Br with colistin produced superior bacterial killing and significantly increased larval survival. In both in vitro and in vivo assays light activation was not required for antibacterial activity. This data supports further evaluation of [Mn(CO)3(tpa-κ3N)]Br as a potential agent for treatment of systemic infections in humans and animals, when used with permeabilising agents such as colistin.


Assuntos
Colistina/administração & dosagem , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Compostos Organometálicos/administração & dosagem , Animais , Anti-Infecciosos/administração & dosagem , Aves/microbiologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos
19.
mBio ; 8(4)2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720734

RESUMO

AcrAB-TolC is the paradigm resistance-nodulation-division (RND) multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq) revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps.IMPORTANCE Antibiotic resistance is a major public health concern. In Gram-negative bacteria, overexpression of the AcrAB-TolC multidrug efflux system confers resistance to clinically useful drugs. Here, we show that loss of AcrB efflux function causes loss of virulence in Salmonella enterica serovar Typhimurium. This is due to the reduction of bacterial factors necessary for infection, which is likely to be caused by the retention of noxious molecules inside the bacterium. We also show that, in contrast to loss of AcrB protein, loss of efflux does not induce overexpression of other efflux pumps from the same family. This indicates that there are differences between loss of efflux protein and loss of efflux that make gene deletion mutants unsuitable for studying the biological function of membrane transporters. Understanding the biological role of AcrB will help to assess the risks of targeting efflux pumps as a strategy to combat antibiotic resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Salmonella typhimurium/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Benzimidazóis/metabolismo , Transporte Biológico , Modelos Animais de Doenças , Endocitose , Células Epiteliais/microbiologia , Etídio/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Ilhas Genômicas , Lepidópteros , Proteínas de Membrana Transportadoras/genética , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Salmonelose Animal , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Virulência , Fatores de Virulência/genética
20.
Infect Dis Ther ; 6(3): 435-442, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28639145

RESUMO

INTRODUCTION: Acinetobacter baumannii is an important human nosocomial pathogen; most clinical isolates are multidrug-resistant (MDR). Infections caused by A. baumannii often lead to high morbidity and mortality, with limited treatment options. Owing to the small number of anti-Gram-negative antibiotics in the development pipeline, researchers are looking to other natural compounds. The aim of this study was to determine the in vitro kill kinetics, in vivo efficacy and toxicity of theaflavin-epicatechin combinations against MDR A. baumannii. METHODS: Kill-kinetic assays were performed in Mueller-Hinton 2 broth over 24 h. Toxicity of the compound in the insect model, Galleria mellonella was investigated. The effect of theaflavin-epicatechin combinations on mortality and morbidity were assessed in Acinetobacter baumannii-infected G. mellonella. Larvae were scored for morbidity (melanisation: scale; 0-4) and mortality over 96 h. RESULTS: Kill-kinetic assays revealed that monotherapy had bacteriostatic activity over 24 h, whereas theaflavin-epicatechin combinations were bactericidal (a >3 log reduction in bacterial numbers at 24 h compared with the starting inoculum). Both polyphenols were non-toxic to G. mellonella at concentrations of up to 1000 mg/kg. In vivo treatment assays showed that the combination significantly increased (t test; p ≤ 0.05) larval survival at 96 h to 86% [±17 standard deviation percentage points (pp)] compared to monotherapy with theaflavin (52% ± 14 pp), epicatechin (44% ± 25 pp) or PBS (31% ± 13 pp). Morbidity was also lower in larvae treated with the combination, compared with monotherapy. CONCLUSION: Polyphenol combinations produce effective antibacterial action against A. baumannii and show great potential for the treatment of infections caused by MDR A. baumannii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...