Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 61(5): 702-12, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22797008

RESUMO

Although the sodium/potassium transporting ATPase subunit alpha-3 (AT1A3) has been linked to memory mechanisms in rodents, regulation of this ATPase in terms of activity and complex levels by memory performance in a land maze has not been shown so far. It was therefore the aim of the study to link memory retrieval in the multiple T-Maze (MTM) to AT1A3 protein levels and activity. C57BL/6J mice were trained in the MTM and euthanized 6h following memory retrieval. Hippocampal membrane proteins were prepared by ultracentrifugation and run on blue native gel electrophoresis (BN-PAGE). Enzyme activity was evaluated using an in-gel method. AT1A3 protein was characterized using mass spectrometry (nano-LC-ESI-MS/MS). On BN-PAGE a single band was observed at 240 kDa, which corresponds to the dimeric form of the enzyme. Higher levels of AT1A3 complex were seen in trained mice. Also ATPase activity was higher in trained mice, and was observed both at 110 and at 240 kDa. Mass spectrometry unambiguously identified AT1A3 with 98.91% sequence coverage. A series of novel AT1A3 phosphorylation sites were detected. Taken together, it was shown that increased AT1A3 protein levels for the dimer as well as AT1A3 activity represented by the monomer and the dimer were paralleling memory training in the MTM. This may be relevant for understanding the role of the catalytic hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane that generates the electrochemical gradient of sodium and potassium ions. Herein, we provide evidence for a possible role of AT1A3 in memory mechanisms and support previous findings using different animal models for memory formation.


Assuntos
Hipocampo/enzimologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Ativação Enzimática/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , ATPase Trocadora de Sódio-Potássio/fisiologia
2.
Brain Struct Funct ; 217(2): 363-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22113856

RESUMO

The glutamate transporter 1 (GLT-1) is essential for glutamate uptake in the brain and associated with various psychiatric and neurological disorders. Pharmacological inhibition of GLT-1 results in memory deficits, but no study linking native GLT-1 complexes was published so far. It was therefore the aim of the study to associate this highly hydrophobic, eight transmembrane spanning domains containing transporter to memory training in the Multiple T-maze (MTM). C57BL/6J mice were used for the spatial memory training experiments, and trained mice were compared to untrained (yoked) animals. Mouse hippocampi were dissected out 6 h after training on day 4, and a total enriched membrane fraction was prepared by ultracentrifugation. Membrane proteins were separated by blue native polyacrylamide gel electrophoresis (BN-PAGE) with subsequent Western blotting against GLT-1 on these native gels. Moreover, GLT-1 complexes were identified by mass spectrometry (nano-LC-ESI-MS/MS). Animals learned the MTM task and multiple GLT-1 complexes were detected at apparent molecular weights of 242, 480 and 720 kDa on BN-PAGE Western blotting. GLT-1 complex levels were significantly higher in the trained group as compared to yoked controls, and antibody specificity was verified by immunoblotting on multidimensional gels. Hippocampal GLT-1 was unambiguously identified by mass spectrometry with high sequence coverage, and glycosylation was observed. It is revealed that increased GLT-1 complex levels are paralleling and are linked to spatial memory training. We provide evidence that signal termination, represented by the excitatory amino acid transporter GLT-1 complexes, is involved in spatial memory mechanisms.


Assuntos
Transportador 2 de Aminoácido Excitatório/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Animais , Glicosilação , Hipocampo/patologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...