Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 161: 106701, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244145

RESUMO

Quantitative image analysis models are used for medical imaging tasks such as registration, classification, object detection, and segmentation. For these models to be capable of making accurate predictions, they need valid and precise information. We propose PixelMiner, a convolution-based deep-learning model for interpolating computed tomography (CT) imaging slices. PixelMiner was designed to produce texture-accurate slice interpolations by trading off pixel accuracy for texture accuracy. PixelMiner was trained on a dataset of 7829 CT scans and validated using an external dataset. We demonstrated the model's effectiveness by using the structural similarity index (SSIM), peak signal to noise ratio (PSNR), and the root mean squared error (RMSE) of extracted texture features. Additionally, we developed and used a new metric, the mean squared mapped feature error (MSMFE). The performance of PixelMiner was compared to four other interpolation methods: (tri-)linear, (tri-)cubic, windowed sinc (WS), and nearest neighbor (NN). PixelMiner produced texture with a significantly lowest average texture error compared to all other methods with a normalized root mean squared error (NRMSE) of 0.11 (p < .01), and the significantly highest reproducibility with a concordance correlation coefficient (CCC) ≥ 0.85 (p < .01). PixelMiner was not only shown to better preserve features but was also validated using an ablation study by removing auto-regression from the model and was shown to improve segmentations on interpolated slices.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador/métodos
2.
Methods ; 188: 20-29, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32504782

RESUMO

The advancement of artificial intelligence concurrent with the development of medical imaging techniques provided a unique opportunity to turn medical imaging from mostly qualitative, to further quantitative and mineable data that can be explored for the development of clinical decision support systems (cDSS). Radiomics, a method for the high throughput extraction of hand-crafted features from medical images, and deep learning -the data driven modeling techniques based on the principles of simplified brain neuron interactions, are the most researched quantitative imaging techniques. Many studies reported on the potential of such techniques in the context of cDSS. Such techniques could be highly appealing due to the reuse of existing data, automation of clinical workflows, minimal invasiveness, three-dimensional volumetric characterization, and the promise of high accuracy and reproducibility of results and cost-effectiveness. Nevertheless, there are several challenges that quantitative imaging techniques face, and need to be addressed before the translation to clinical use. These challenges include, but are not limited to, the explainability of the models, the reproducibility of the quantitative imaging features, and their sensitivity to variations in image acquisition and reconstruction parameters. In this narrative review, we report on the status of quantitative medical image analysis using radiomics and deep learning, the challenges the field is facing, propose a framework for robust radiomics analysis, and discuss future prospects.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Medicina de Precisão/métodos , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...