Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 102(6): 1497-509, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20943549

RESUMO

In a phylogenetic study of arbuscular mycorrhizal fungal species in Acaulospora (Acaulosporaceae, Glomeromycota) we discovered that species classified in genus Kuklospora, a supposed sister clade of Acaulospora, did not partition as a monophyletic clade. Species in these two genera can be distinguished only by the position of the spore relative to a precursor structure, the sporiferous saccule, as either within (entrophosporoid) or laterally (acaulosporoid) on the saccule subtending hypha. Subsequent spore differentiation follows identical patterns and organization. Molecular phylogeny reconstructed from nrLSU gene sequences, together with developmental data, support the hypothesis that the entrophosporoid mode of spore formation evolved many times and thus represents a convergent trait of little phylogenetic significance. Therefore genus Kuklospora is rejected as a valid monophyletic group and it is integrated taxonomically into genus Acaulospora. Thus Acaulospora colombiana and Acaulospora kentinensis are erected as new combinations (formerly Kuklospora colombiana and Kuklospora kentinensis). Mode of spore formation is demoted from a genus-specific character to one that is included with other traits to define Acaulospora species. In addition we describe a new AM fungal species, Acaulospora colliculosa (Acaulosporaceae), that originated from a tallgrass prairie in North America. Field-collected spores of A. colliculosa are small (<100 µm diam), hyaline or subhyaline to pale yellow and form via entrophosporoid development based on structure and organization of cicatrices and attached hyphae. Each spore consists of a bilayered spore wall and two bilayered inner walls. A germination orb likely forms after the completion of spore development to initiate germination, but this structure was not observed. A character distinguishing A. colliculosa from other Acaulospora species is hyaline to subhyaline hemispherical protuberances on the surface of the outer spore wall layer. A phylogeny reconstructed from partial nrLSU gene sequences unambiguously placed A. colliculosa in the Acaulospora clade.


Assuntos
Glomeromycota/classificação , Glomeromycota/citologia , Filogenia , Microbiologia do Solo , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Glomeromycota/genética , Glomeromycota/isolamento & purificação , Dados de Sequência Molecular , Esporos Fúngicos/classificação , Esporos Fúngicos/citologia , Esporos Fúngicos/genética , Esporos Fúngicos/isolamento & purificação
2.
Proc Biol Sci ; 268(1464): 273-7, 2001 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-11217898

RESUMO

Negative frequency dependence resulting from interspecific interactions is considered a driving force in allowing the coexistence of competitors. While interactions between species and genotypes can also result in positive frequency dependence, positive frequency dependence has usually been credited with hastening the extinction of rare types and is not thought to contribute to coexistence. In the present paper, we develop a stochastic cellular automata model that allows us to vary the scale of frequency dependence and the scale of dispersal. The results of this model indicate that positive frequency dependence will allow the coexistence of two species at a greater rate than would be expected from chance. This coexistence arises from the generation of banding patterns that will be stable over long time-periods. As a result, we found that positive frequency-dependent interactions over local spatial scales promote coexistence over neutral interactions. This result was robust to variation in boundary conditions within the simulation and to variation in levels of disturbance. Under all conditions, coexistence is enhanced as the strength of positive frequency-dependent interactions is increased.


Assuntos
Evolução Biológica , Modelos Biológicos , Comportamento Social , Animais
3.
Am J Bot ; 88(9): 1650-6, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21669699

RESUMO

Andropogon gerardii seed obtained from Kansas and Illinois was grown in a controlled environment in their own and each other's soils, with and without arbuscular mycorrhizal fungi (AMF). Each ecotype grew comparatively better in its own soil indicating adaptation to its soil of origin. Overall, A. gerardii benefited more from AMF in low-nutrient Kansas soil than Illinois soil. The two ecotypes, however, did not benefit equally from mycorrhizal infection. The Kansas ecotype was three times more responsive to mycorrhizal infection in the Kansas soil than was the Illinois ecotype. Our results indicate that plant adaptation to the nutrient levels of their local soils is likely to be due, at least in part, to a shift in their dependence on mycorrhizal fungi. The Illinois ecotype of A. gerardii has evolved a reduced dependence upon these fungi and greater reliance on a more highly branched root system. In contrast, the Kansas ecotype had a significantly coarser root system and invested proportionately greater carbon in the symbiotic association with AMF as measured by spore production. This study provides the first demonstration that plants can adapt to changing soil nutrient levels by shifting their dependence on AMF. This result has broad implications for our understanding of the role of these fungi in agricultural systems.

4.
Am J Bot ; 87(12): 1769-77, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11118412

RESUMO

Populations of Allium vineale commonly include individuals with very different allocation patterns to three modes of reproduction: sexual flowers, aerially produced asexual bulbils, and belowground asexual offsets. If selection is currently acting to maintain these different allocation patterns there must be a genetic basis for variation in allocation to these three reproductive modes. In addition, negative genetic correlations between reproductive traits would imply evolutionary trade-offs among reproductive strategies. We evaluated the heritability of these allocation patterns by growing 16 clones from a single population in the greenhouse at two levels of fertilization. Bulb mass and the mass and number of bulbils, offsets, and flowers were used as response variables, in addition to the proportion allocated to each reproductive mode. We found evidence of substantial heritable variation in allocation to sexual reproduction and in allocation within the two modes of asexual reproduction, indicating high sensitivity of these allocation patterns to natural selection. We also found evidence of strong negative genetic correlations between bulbil and flower traits, as well as between bulbil and offset traits, with one group of genotypes allocating greater resources to aerial asexual bulbils and the second group allocating more resources to belowground asexual offsets and aerial flowers. Phenotypic plasticity in allocation to above- vs. belowground asexual reproduction and sexual vs. asexual aerial reproduction was limited, indicating that plants are unlikely to change reproductive mode in response to nutrient availability. Together, then, we have demonstrated strong heritability for, and trade-offs in, the reproductive allocation patterns within this plant population.

5.
Heredity (Edinb) ; 85 Pt 4: 366-72, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11122414

RESUMO

Symbiosis between legumes and nitrogen-fixing bacteria is thought to bring mutual benefit to each participant. However, it is not known how rhizobia benefit from nodulation of legume hosts because they fix nitrogen only after differentiating into bacteroids, terminally differentiated cells that cannot reproduce. Because free-living rhizobia can reproduce, and may benefit from the increase of plant root exudates stimulated by nodulation, evolution of symbiotic nitrogen fixation may depend upon kin selection. However, unrelated nonmutualists may also benefit from increased plant exudates and nitrogen-fixing populations are therefore vulnerable to invasion by nonfixing, saprophytic Rhizobium. The access of nonfixing Rhizobium to the plant exudates associated with nodules depends upon the spatial structure of the Rhizobium populations within the soil. We investigate the influence of spatial structure on the evolution of N-fixation within a Rhizobium population using a mathematical model. Our model demonstrates that spatial structure is necessary for the evolution of N-fixation and that N-fixation is more likely to evolve with increasing degrees of spatial structure. In fact, we identify three dynamic outcomes that depend upon the relative strength of the costs of N-fixation relative to the degree of spatial structure and benefits resulting from nodulations. If the costs are relatively high, N-fixation will not evolve; if the costs are relatively low, N-fixing genes will fix in the population, but at intermediate conditions, a stable mixture of N-fixing bacteria and nonfixing bacteria will be maintained. The conditions for coexistence of N-fixing bacteria and nonfixing bacteria expand under a saturating relationship between nodule numbers and N-fixing genotype frequency.


Assuntos
Evolução Biológica , Fixação de Nitrogênio/genética , Rhizobium/genética , Genótipo , Modelos Genéticos , Modelos Teóricos , Plantas/genética , Plantas/microbiologia , Rhizobium/classificação , Rhizobium/crescimento & desenvolvimento
6.
Am J Bot ; 86(9): 1209-16, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10487808

RESUMO

Substantial variation was found among single-spore cultures established from a single population of the arbuscular mycorrhizal fungus Scutellospora pellucida. A common environment experiment demonstrated that five single-spore cultures differed in their average spore shape (as measured by length:width ratios) and size (volume) with interisolate heritabilities of offspring mean values of 0.96 and 0.87, respectively (0.66 and 0.43 for the shape and size of individual spores). The distribution of offspring spore shapes also differed in levels of variance, skewness, and kurtosis. In fact, these aspects of the distributions shifted with mean spore shape as predicted by the binomial distribution-the distribution expected due to the segregation of genetically diverse nuclei through dividing hyphae. Thus, the original parental spores generating these cultures appear to have contained genetically variable nuclei, which then segregate into the offspring spores to generate consistent differences in the mean, variance, skewness, and kurtosis of the distribution of offspring spore shapes. This nuclear segregation may be followed by the assemblage of novel combinations of nuclei through hyphal fusion. Together these processes are rarely considered mechanisms for the creation of novel genetic combinations and may contribute to the maintenance of the high level of heritable variation observed in this study.

7.
Am J Bot ; 86(4): 547-53, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10205075

RESUMO

The Cyperaceae have generally been considered nonmycorrhizal, although recent evidence suggests that mycotrophy may be considerably more widespread among sedges than was previously realized. This study surveyed 23 species of Carex occurring in upland and wetland habitats in northeastern Illinois. Mycorrhizal infection by arbuscular fungi was found in the roots of 16 species of Carex and appears to occur in response to many factors, both environmental and phylogenetic. While some species appear to be obligately nonmycorrhizal, edaphic influences may be responsible for infection in others. In five of the seven Carex species that were nonmycorrhizal, a novel root character, the presence of bulbous-based root hairs, was identified. The taxonomically patchy distribution of the distinctive root hair trait suggests that these structures may have evolved several times within the genus. Evidence of multiple independent origins of the root hair trait lends support to the hypothesis that root hairs represent an adaptation to nonmycotrophy. Although taxonomic position does seem to be of importance in determining the mycorrhizal dependence of sedges, the pattern may be a patchwork of both mycorrhizal clades and clades that have adapted to the nonmycorrhizal state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...