Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18142, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307455

RESUMO

The analysis of turbulence in plasmas is fundamental in fusion research. Despite extensive progress in theoretical modeling in the past 15 years, we still lack a complete and consistent understanding of turbulence in magnetic confinement devices, such as tokamaks. Experimental studies are challenging due to the diverse processes that drive the high-speed dynamics of turbulent phenomena. This work presents a novel application of motion tracking to identify and track turbulent filaments in fusion plasmas, called blobs, in a high-frequency video obtained from Gas Puff Imaging diagnostics. We compare four baseline methods (RAFT, Mask R-CNN, GMA, and Flow Walk) trained on synthetic data and then test on synthetic and real-world data obtained from plasmas in the Tokamak à Configuration Variable (TCV). The blob regime identified from an analysis of blob trajectories agrees with state-of-the-art conditional averaging methods for each of the baseline methods employed, giving confidence in the accuracy of these techniques. By making a dataset and benchmark publicly available, we aim to lower the entry barrier to tokamak plasma research, thereby greatly broadening the community of scientists and engineers who might apply their talents to this endeavor.

2.
ACS Appl Mater Interfaces ; 14(3): 4668-4679, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35026110

RESUMO

Generating droplets from a continuous stream of fluid requires precise tuning of a device to find optimized control parameter conditions. It is analytically intractable to compute the necessary control parameter values of a droplet-generating device that produces optimized droplets. Furthermore, as the length scale of the fluid flow changes, the formation physics and optimized conditions that induce flow decomposition into droplets also change. Hence, a single proportional integral derivative controller is too inflexible to optimize devices of different length scales or different control parameters, while classification machine learning techniques take days to train and require millions of droplet images. Therefore, the question is posed, can a single method be created that universally optimizes multiple length-scale droplets using only a few data points and is faster than previous approaches? In this paper, a Bayesian optimization and computer vision feedback loop is designed to quickly and reliably discover the control parameter values that generate optimized droplets within different length-scale devices. This method is demonstrated to converge on optimum parameter values using 60 images in only 2.3 h, 30× faster than previous approaches. Model implementation is demonstrated for two different length-scale devices: a milliscale inkjet device and a microfluidics device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA