Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Psychiatr Res ; 175: 259-270, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38754148

RESUMO

The CACNA1C gene encodes the alpha-1c subunit of the Cav1.2 calcium channel, a regulator of neuronal calcium influx involved in neurotransmitter release and synaptic plasticity. Genetic data show a role for CACNA1C in depressive symptoms underlying different psychiatric diagnoses. However, the mechanisms involved still require further exploration. This study aimed to investigate sex and region-specific changes in the Cacna1c gene and behavioral outcomes in mice exposed to chronic stress. Moreover, we evaluated the Nuclear factor of activated T-cells 5 (Nfat5) and the Brain-derived neurotrophic factor (Bdnf) as potential upstream and downstream Cacna1c targets and their correlation in stressed mice and humans with depression. Male and female Swiss mice were exposed to chronic unpredictable stress (CUS) for 21 days. Animal-integrated emotionality was assessed using the sucrose splash test, the tail suspension, the open-field test, and the elevated-plus-maze. Gene expression analysis was performed in the amygdala, prefrontal cortex, and hippocampus. Human data for in silico analysis was obtained from the Gene Expression Omnibus. CUS-induced impairment in integrated emotional regulation was observed in males. Gene expression analysis showed decreased levels of Cacna1c and Nfat5 and increased levels of Bdnf transcripts in the amygdala of stressed male mice. In contrast, there were no major changes in behavioral responses or gene expression in female mice after stress. The expression of the three genes was significantly correlated in the amygdala of mice and humans. The strong and positive correlation between Canac1c and Nfat5 suggests a potential role for this transcription factor in Canac1c expression. These changes could impact amygdala reactivity and emotional responses, making them a potential target for psychiatric intervention.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36521585

RESUMO

Behavioral flexibility permits the appropriate behavioral adjustments in response to changing environmental demands. The present study aimed to evaluate if variability in baseline flexibility can enable differences in coping strategies, changes in neuroplasticity, and behavioral outcomes in responses to chronic social defeat stress (CSDS). Male C57BL6 mice were submitted to the Morris Water Maze (MWM) using an extended protocol for reversal learning to assess. The animals were divided into low and high behavioral flexibility groups based on their performance on the last day of acquisition versus the four days of reversal learning. The CSDS was applied for ten consecutive days, and coping strategies were evaluated during the physical interaction on the first and last day of stress. A battery of behavioral tests to assess social and emotional behavior was conducted 24 h after the CSDS protocol. The complexity of prefrontal cortex (PFC) neuronal morphology was evaluated by the Golgi-Cox method. Animals with High Flexibility exhibited changes in their CSDS coping strategies, from active to passive coping, during the CSDS protocol. Low Flexibility mice had no alterations in the coping strategies during CSDS. After social stress, High Flexibility was associated with reduced social interaction with an aggressive Swiss mouse, higher latency to immobility in the tail suspension test, and reduced latency to self-care in the sucrose splash test. High Flexibility mice also displayed higher dendritic complexity on pyramidal neurons from the prelimbic and infralimbic prefrontal cortex compared to Low Flexibility mice. These results suggest That High Flexibility is associated with increased neuroplasticity in cortical areas and better emotional responses related to behavioral despair and motivation. However, exposure to CSDS reversed the beneficial effects of High Flexibility in male mice. Thus, this study suggests that baseline variability in behavioral flexibility, even in inbred strains, might be associated with differences in coping strategies, PFC morphology, and behavioral responses to social stress.


Assuntos
Emoções , Derrota Social , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Estresse Psicológico/psicologia , Adaptação Psicológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...