Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 21(1): 568, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006255

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a heterogeneous disease and we have previously shown that rapid relapse of TNBC is associated with distinct sociodemographic features. We hypothesized that rapid versus late relapse in TNBC is also defined by distinct clinical and genomic features of primary tumors. METHODS: Using three publicly-available datasets, we identified 453 patients diagnosed with primary TNBC with adequate follow-up to be characterized as 'rapid relapse' (rrTNBC; distant relapse or death ≤2 years of diagnosis), 'late relapse' (lrTNBC; > 2 years) or 'no relapse' (nrTNBC: > 5 years no relapse/death). We explored basic clinical and primary tumor multi-omic data, including whole transcriptome (n = 453), and whole genome copy number and mutation data for 171 cancer-related genes (n = 317). Association of rapid relapse with clinical and genomic features were assessed using Pearson chi-squared tests, t-tests, ANOVA, and Fisher exact tests. We evaluated logistic regression models of clinical features with subtype versus two models that integrated significant genomic features. RESULTS: Relative to nrTNBC, both rrTNBC and lrTNBC had significantly lower immune signatures and immune signatures were highly correlated to anti-tumor CD8 T-cell, M1 macrophage, and gamma-delta T-cell CIBERSORT inferred immune subsets. Intriguingly, lrTNBCs were enriched for luminal signatures. There was no difference in tumor mutation burden or percent genome altered across groups. Logistic regression mModels that incorporate genomic features significantly outperformed standard clinical/subtype models in training (n = 63 patients), testing (n = 63) and independent validation (n = 34) cohorts, although performance of all models were overall modest. CONCLUSIONS: We identify clinical and genomic features associated with rapid relapse TNBC for further study of this aggressive TNBC subset.


Assuntos
Biomarcadores Tumorais/genética , Mastectomia , Terapia Neoadjuvante/estatística & dados numéricos , Recidiva Local de Neoplasia/genética , Neoplasias de Mama Triplo Negativas/terapia , Adulto , Quimioterapia Adjuvante/estatística & dados numéricos , Variações do Número de Cópias de DNA , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Modelos Genéticos , Mutação , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/prevenção & controle , Prognóstico , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Fatores de Tempo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade
2.
Cancer Res ; 81(3): 606-618, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327406

RESUMO

Platelet-derived growth factor receptor-beta (PDGFRß) is a receptor tyrosine kinase found in cells of mesenchymal origin such as fibroblasts and pericytes. Activation of this receptor is dependent on paracrine ligand induction, and its preferred ligand PDGFB is released by neighboring epithelial and endothelial cells. While expression of both PDGFRß and PDGFB has been noted in patient breast tumors for decades, how PDGFB-to-PDGFRß tumor-stroma signaling mediates breast cancer initiation, progression, and metastasis remains unclear. Here we demonstrate this paracrine signaling pathway that mediates both primary tumor growth and metastasis, specifically, metastasis to the brain. Elevated levels of PDGFB accelerated orthotopic tumor growth and intracranial growth of mammary tumor cells, while mesenchymal-specific expression of an activating mutant PDGFRß (PDGFRßD849V) exerted proproliferative signals on adjacent mammary tumor cells. Stromal expression of PDGFRßD849V also promoted brain metastases of mammary tumor cells expressing high PDGFB when injected intravenously. In the brain, expression of PDGFRßD849V was observed within a subset of astrocytes, and aged mice expressing PDGFRßD849V exhibited reactive gliosis. Importantly, the PDGFR-specific inhibitor crenolanib significantly reduced intracranial growth of mammary tumor cells. In a tissue microarray comprised of 363 primary human breast tumors, high PDGFB protein expression was prognostic for brain metastases, but not metastases to other sites. Our results advocate the use of mice expressing PDGFRßD849V in their stromal cells as a preclinical model of breast cancer-associated brain metastases and support continued investigation into the clinical prognostic and therapeutic use of PDGFB-to-PDGFRß signaling in women with breast cancer. SIGNIFICANCE: These studies reveal a previously unknown role for PDGFB-to-PDGFRß paracrine signaling in the promotion of breast cancer brain metastases and support the prognostic and therapeutic clinical utility of this pathway for patients.See related article by Wyss and colleagues, p. 594.


Assuntos
Neoplasias da Mama , MicroRNAs , Animais , Encéfalo/metabolismo , Neoplasias da Mama/genética , Células Endoteliais/metabolismo , Humanos , Camundongos , Receptor beta de Fator de Crescimento Derivado de Plaquetas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...