Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Neuropsychopharmacol ; 23(3): 253-62, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22658400

RESUMO

Allosteric modulators are emerging as new therapeutics for the treatment of psychiatric illnesses, such as schizophrenia. Conventional antipsychotic drugs are typically dopamine D2 receptor antagonists that compete with endogenous dopamine at the orthosteric site, and block excessive dopamine neurotransmission in the brain. However, they are unable to treat all symptoms of schizophrenia and often cause adverse motor and metabolic side effects. The binding profile of allosteric modulators differs, as they interact with their receptor at a novel binding site and their activity is determined by physiological signaling. In collaboration, our laboratories have synthesized and evaluated over 185 compounds for their allosteric modulatory activity at the dopamine D2 receptor. Of these compounds, PAOPA is among the most potent allosteric modulators, and has been shown to be effective in treating the MK-801 induced preclinical animal model of schizophrenia. The objective of this study was to evaluate PAOPA's ability to prevent and reverse behavioral abnormalities in an amphetamine-sensitized preclinical animal model of schizophrenia. Amphetamine sensitized rats were given PAOPA during sensitization and following sensitization to determine whether PAOPA is able to prevent and reverse behavioral abnormalities. Furthermore, changes in post-mortem dopamine levels were measured by high performance liquid chromatography in various brain regions. The results presented demonstrate that PAOPA is able to prevent and reverse behavioral and biochemical abnormalities in an amphetamine-sensitized animal model of schizophrenia.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Dopamina/metabolismo , Pirrolidinonas/farmacologia , Receptores de Dopamina D2/efeitos dos fármacos , Esquizofrenia/induzido quimicamente , Regulação Alostérica , Anfetamina , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Atividade Motora/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Schizophr Res ; 130(1-3): 250-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21689907

RESUMO

Synapsin II is a synaptic vesicle-associated phosphoprotein that has been implicated in the pathophysiology of schizophrenia. Studies have demonstrated reductions in synapsin II mRNA and protein in medial prefrontal cortical post-mortem samples from patients with schizophrenia, genetic associations between synapsin II and schizophrenia, and synapsin II protein regulation by dopamine receptor activation. Collectively, this research indicates a relationship between synapsin II dysregulation and schizophrenia; however, it remains unknown whether perturbations in synapsin II play a role in the pathophysiology of this disease. The aim of this project was to evaluate animals with selective knock-down of synapsin II in the medial prefrontal cortex. After continuous infusion of synapsin II antisense sequences, animals were examined for the presence of schizophrenic-like behavioral phenotypes and assessed on the response to clinically relevant antipsychotic drugs. Our results indicate that rats with selective reductions in medial prefrontal cortical synapsin II demonstrate deficits in sensorimotor gating (prepulse inhibition), reduced social behavior, and hyperlocomotion, which are corrected by the atypical antipsychotic drug olanzapine. Additionally, synapsin II knock-down disrupts serial search efficiency. These behavioral changes are accompanied by reductions in vesicular neurotransmitter transporter protein concentrations for glutamate (VGLUT1 and VGLUT2) and GABA (VGAT), without affecting dopamine (VMAT2). These results implicate a causal role for decreased synapsin II in the medial prefrontal cortex in the pathophysiology of schizophrenia and the mechanisms of aberrant prefrontal cortical circuitry, and suggest that synapsin II may potentially serve as a novel therapeutic target for this disorder.


Assuntos
Sintomas Comportamentais/etiologia , Córtex Pré-Frontal/metabolismo , Esquizofrenia/complicações , Esquizofrenia/patologia , Sinapsinas/metabolismo , Animais , Antipsicóticos/uso terapêutico , Modelos Animais de Doenças , Interações Medicamentosas , Inibição Psicológica , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Oligodesoxirribonucleotídeos Antissenso/efeitos adversos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/fisiologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Filtro Sensorial/efeitos dos fármacos , Comportamento Social , Sinapsinas/química , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo
3.
Eur J Pharmacol ; 641(2-3): 96-101, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20639138

RESUMO

The present study was undertaken to investigate the mechanistic role of l-prolyl-l-leucyl-glycinamide (PLG) in modulating agonist binding to the dopamine D(2L) receptor. Competition and displacement assays indicate that the photoaffinity-labeling peptidomimetics of PLG, 3(R)-[(4(S)-(4-azido-2-hydroxy-benzoyl) amino-2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide hydrochloride (1a) and 3(R)-[(4(S)-(4-azido-2-hydroxy-5-iodo-benzoyl)amino-2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide hydrochloride (1b) bind at the same site as PLG. Autoradiography was used to establish the covalent binding of [(125)I]-1b to an approximately 51kDa protein in bovine striatal membranes. Western blot analysis with a dopamine D(2L)-specific antibody, in combination with autoradiography, following a two-dimensional gel separation, suggested this approximately 51kDa protein to be the dopamine D(2L) receptor. Further evidence for binding of 1b to dopamine D(2L) was provided by samples immunoprecipitated with the D(2L) antibody. These samples were analyzed by western blotting in parallel with autoradiography of [(125)I]-1b labeled protein. Both methods revealed bands at approximately 51kDa. Furthermore, PLG is shown to compete with 1b for binding to the dopamine D(2L) receptor as determined by autoradiography, as well as competition experiments with PLG and 1a. Collectively, these findings suggest the successful development of a photoaffinity-labeling agent, compound 1b, that has been used to elucidate the interaction of PLG specifically with the dopamine D(2L) receptor.


Assuntos
Hormônio Inibidor da Liberação de MSH/metabolismo , Peptidomiméticos/metabolismo , Receptores de Dopamina D2/metabolismo , Regulação Alostérica , Animais , Autorradiografia , Ligação Competitiva , Western Blotting , Bovinos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Eletroforese em Gel Bidimensional , Imunoprecipitação , Hormônio Inibidor da Liberação de MSH/química , Estrutura Molecular , Marcadores de Fotoafinidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...